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para o resto da minha vida e com certeza ajudaram a moldar quem eu sou hoje.
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Resumo

Este trabalho tem como contexto o trabalho em uma gestora de fundos de investimento,
tendo como objetivo suprir esta gestora com o desenvolvimento de uma estratégia de investi-
mentos no mercado acionário brasileiro utilizando-se modelos de redes neurais artificiais do
tipo LSTM. Estas foram utilizadas para elaborar um modelo de previsão de retornos de 20 dias
de um conjunto pré-selecionado de ativos. Em seguida, modelos do tipo ARCH/GARCH fo-
ram utilizados em conjunto a redes neurais LSTM para a previsão de covariâncias dos ativos.
Por fim, técnicas de otimização de alocação dos recursos financeiros nos mesmos ativos com
o objetivo de maximizar os retornos esperados dado um limite pré-estabelecido de risco foram
utilizados para, enfim, a construção da estratégia de investimento. Esta se mostrou rentável no
perı́odo de teste e superou benchmarks relevantes no mercado, como o Ibovespa.

Palavras-Chave – LSTM, ARCH/GARCH, Fronteira Eficiente, Previsão de retornos, In-
vestimentos Quantitativos.





Abstract

This work’s main focus is the development of an investment strategy on the brazilian stock
market using LSTM type artificial neural networks for a mutual funds managing company.
These networks were used to create a model that predicts the 20-day future returns of a previ-
ously established stock group. Afterwards, ARCH and GARCH models were combined with
LSTM neural networks to build a predictor for the stocks’ covariance matrix. Finally, optimiza-
tion techniques for distributing financial resources throughout investments on each stock with
the objective of maximizing returns given a maximum acceptable risk were used to generate
the final investment strategy. Such strategy has shown positive returns within the test sample,
beating relevant market benchmarks, such as Ibovespa.

Keywords – LSTM, ARCH/GARCH, Efficient frontier, Return prediction, Quantitative Invest-
ment.
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17 Bandas de Bollinger aplicadas aos preços diários de ITUB4 ao longo de 140
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1.0 Introdução

1.1 Contexto e Definição do Problema

Fundos de investimento são ”uma comunhão de recursos, captados de pessoas fı́sicas ou

jurı́dicas, com o objetivo de obter ganhos financeiros a partir da aplicação em tı́tulos e valores

mobiliários”(Comissão de Valores Mobiliários). As gestoras de fundos se utilizam de capital

adquirido de clientes para aplicá-los em diversos ativos financeiros e obter lucros para os cli-

entes, arrecadando no processo um percentual do total de recursos financeiros. Os fundos de

investimento podem ser divididos em duas categorias, como segue.

• Fundos passivos - fundos nos quais são aplicadas estratégias simples, normalmente repli-

cando um coletivo de ativos de referência, como por exemplo os que compõem o ı́ndice

Ibovespa (para definição, ler seção 3.1).

• Fundos ativos - fundos nos quais são aplicadas estratégias de maior sofisticação com o

objetivo de maximizar os lucros. Normalmente retornam lucros superiores aos fundos

passivos, no entanto, normalmente suas taxas são também superiores.

O percentual dos recursos monetários arrecadados pela gestora é definido de acordo com

duas taxas, como segue.

• Taxa de administração - arrecadado para financiar os custos operacionais da gestora, como

salários e sistemas de informação, e propiciar lucros

• Taxa de performance - percentuais dos lucros que excedem um benchmark. Assim, esti-

mulam as gestoras a almejarem a maximização dos lucros obtidos. Apenas gestoras de

fundos ativos coletam a taxa de performance.

O autor deste trabalho esteve presente em uma gestora de fundos ativos, nos quais os re-

cursos financeiros são fracionados para serem aplicados de acordo com diferentes estratégias

como forma de diversificação da alocação de seus recursos. Atualmente, a gestora compra e
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vende ativos de acordo com estratégias fundamentalistas, que são estratégias nas quais os ativos

comprados e vendidos são definidos com base em análises de fatores econômicos e financei-

ros relacionados ao ativo. Tem-se como exemplo a compra de propriedade sobre uma empresa

justificada pela expectativa da governança ser eficiente em sua gestão, impulsionando lucros a

serem crescentes ao longo do tempo.

A gestora na qual o autor trabalhou possui a intenção de alocar uma fração de seus recur-

sos financeiros em estratégias quantitativas/sistêmicas, que são estratégias nas quais conceitos

qualitativos de difı́cil mensuração quantitativa – como por exemplo a eficiência gerencial da

governança corporativa de uma empresa – são desconsiderados, dando-se preferência a métodos

computacionais, matemáticos e estatı́sticos para tomar decisões de investimento. Dessa forma,

o objetivo de tal trabalho é a criação de uma estratégia quantitativa de investimentos que traga

retornos superiores a benchmarks como o Ibovespa e, para tanto, o autor buscou na literatura

métodos de realização de investimentos quantitativos.

Este trabalho baseia-se na utilização de técnicas modernas de aprendizado de máquina (para

definições, ver capı́tulo 2) para criação de estratégias quantitativas de investimento. Três obras

na literatura se apresentam como pilares fundamentais deste trabalho, sendo elas:

• ”Portfolio optimization with return prediction using deep learning and machine lear-

ning” por Ma, Han e Wang (2021), no qual os autores propõem um modelo para estimar

as variações percentuais dos preços de um grupo de ativos com base em redes neurais

artificiais

• ”Forecasting the volatility of stock price index: A hybrid model integrating LSTM with

multiple GARCH-type models” por Kim e Won (2018), no qual os autores propõem

a integração de modelos clássicos de previsão de variâncias futuras com redes neurais

artificiais do tipo LSTM

• ”Portfolio selection : efficient diversification of investment” por Markowitz (1959), no

qual o autor apresenta técnicas de diversificação e alocação eficiente de recursos finan-

ceiros.

1.2 Organização do Trabalho

Para a elaboração estruturada do trabalho, este está dividido em 9 capı́tulos, sendo eles:

1. Introdução - apresentação do problema e dos objetivos.



19

2. Aprendizado de Máquina (Machine Learning) - apresentação dos conceitos de apren-

dizado de máquina que serão utilizados no desenvolvimento dos modelos preditivos.

3. Portfólios de Investimento - capı́tulo dedicado à apresentação dos conceitos financeiros

necessários ao entendimento da estratégia desenvolvida, bem como a apresentação de

técnicas de alocação de recursos financeiros utilizadas.

4. Heterocedasticidade condicional auto-regressiva - apresentação dos modelos utiliza-

dos em conjunto às redes neurais para previsão de variâncias futuras de preços de ativos.

5. Indicadores técnicos - uma revisão sobre alguns dos conceitos amplamente utilizados

dentre investidores para técnicas de investimentos quantitativos.

6. Ativos Estudados - uma breve descrição de todos os ativos cujas caracterı́sticas foram

utilizadas como variáveis explicatórias nos modelos preditivos

7. Desenvolvimento - apresentação dos passos tomados, baseados na literatura, para se che-

gar ao modelo proposto neste trabalho.

8. Resultados - uma comparação entre o modelo proposto e alguns benchmarks, como

forma de verificar a eficiência e eficácia do modelo.

9. Conclusão - breve descrição das conclusões constatadas pelo autor ao longo do desdo-

bramento deste trabalho, bem como sugestões de próximos passos a serem tomados.
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2.0 Aprendizado de Máquina (Machine Learning)

2.1 Princı́pios básicos do ML

De acordo com James et al. (2013), o aprendizado estatı́stico é um conjunto de ferra-

mentas para a compreensão de dados, entendendo compreensão como previsão, classificação,

identificação de padrões, e outros. Seja Y uma resposta quantitativa e p previsores, X1, X2, ...,Xp,

assumindo-se que exista alguma relação entre Y e X = (X1, X2, ..., Xp). O autor define então

um modelo estatı́stico entre Y e X na equação 2.1, em que ε corresponde ao erro do modelo.

Y = f (X)+ ε (2.1)

Neste caso, não é conhecida a função f , mas assume-se que ela exista. Dessa forma, o

aprendizado estatı́stico pode ser compreendido como o conjunto de ferramentas para se obter

um modelo que aproxime f .

Dentre os campos de aprendizado estatı́stico, encontra-se o ML (”Aprendizado de Máquina”,

do inglês ”Machine Learning”), que desenvolve programas que são capazes de se autodesenvol-

verem a cumprir uma dada tarefa sem que recebam as ordens explı́citas na sintaxe computaci-

onal para cumprir tal tarefa. Como definição, tem-se que ”Um programa de computador é dito

para aprender com a experiência E com a relação a alguma classe de tarefas T e medida de de-

sempenho P, se o seu desempenho em tarefas em T , medida pelo P, melhora com a experiência

E” (MITCHELL, 1997).

Um exemplo é uma regressão linear simples como visto na equação 2.2, na qual ŷ corres-

ponde a uma previsão de y em função de um certo valor de x e ε ao erro da previsão, definido

na equação 2.3. No evento de existir uma relação de linearidade entre as duas variáveis (em que

ε 6= 0), é esperado que o aumento do número de indivı́duos da amostra aumente a probabilidade

da capacidade preditiva do modelo, tornando-o mais próximo da f que deseja-se descobrir.

Os valores dos parâmetros β0 e β1 são determinados de forma a minimizar o erro quadrático

médio (EQM) da previsão na amostra de tamanho m. Dessa forma, a regressão melhora seu

desempenho na tarefa T (prever o valor de y) medido por P (o EQM) com a experiência E (as
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amostras).

yi = ŷi + εi

ŷ(x) = β0 +β1 · x
(2.2)

J =
m

∑
i=1

(ŷi− yi)
2

m
(2.3)

É possı́vel constatar que o valor resultante da equação 2.3 é dependente dos parâmetros

α , β0 e β1 que são utilizados. A função que descreve o valor do erro total em função dos

parâmetros é chamada de Função Custo, com notação J(θ), em que θ são os parâmetros do

modelo de previsão. A maneira como se define o erro resultante acaba por definir também o

comportamento de J(θ).

De maneira análoga à regressão linear, o ML consiste em utilizar uma amostra e criar

equações que possam descrever a(s) variável(eis) dependente(s), também minimzando seus va-

lores de erros de previsão.

Apesar de existirem outros grandes métodos de aprendizado de máquina, este trabalho abor-

dará apenas o ”Aprendizado Supervisionado”, o qual funciona de maneira análoga à regressão

linear, no qual um modelo estima um valor para a variável independente com base em variáveis

dependentes sabendo-se, para uma dada amostra, o valor da variável independente.

2.2 Funcionamento básico de uma rede neural artificial

As redes neurais artificiais originaram-se com inspiração nas redes neurais biológicas, nas

quais neurônios recebem sinais de outros neurônios através de seus dendritos, processam tais

sinais e podem ou não serem ativados, emitindo um sinal de saı́da a outros neurônios. No

trabalho de Fiesler (1994), o autor formaliza a definição de redes neurais artificiais, descrevendo

que são compostas por dois componentes: sua estrutura e seu esquema de interconexões.

Segundo o autor, a estrutura é o número de grupos que a rede possui e o número de

neurônios em cada grupo. No evento desses grupos estarem linearmente ordenados, são de-

nominados como camadas. O esquema de interconexões se refere aos tipos de conexões usa-

das, podendo ser simétricas ou assimétricas, a ordem dessas conexões e a conectividade (quais

neurônios estão conectados). Assim, um exemplo de uma rede neural com três camadas pode

ser observado na Figura 1, sendo a conectividade representada pelas setas. Esta rede pode rece-

ber, por exemplo, os valores de preços de três produtos distintos e retornando, como saı́da, os
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valores de preços previstos de tais produtos em um ano no futuro.

Redes que possuem camadas linearmente ordenadas como a da Figura 1 são denominadas

redes do tipo feedforward. Em tais redes, a primeira camada é a camada de entrada, a última é

a camada de saı́da e todas as outras são denotadas camadas ocultas.

Figura 1: Representação do funcionamento de uma rede neural básica

Fonte: elaborado pelo autor

O forward propagation (do inglês, ”propagação dianteira”) é iniciado pela inserção de va-

lores nos neurônios da camada de entrada. Cada nó da rede irá transformar o valor recebido e

transferi-los a todos os neurônios da camada seguinte, e assim sucessivamente até que se chegue

à camada de saı́da. Essa transformação que ocorre em cada neurônio se dá por duas partes: pri-

meiramente, soma os valores recebidos de todos os nós da camada anterior, multiplicados pelos

pesos de cada interconexão w; em seguida, é aplicada uma função não linear sobre o resultado,

obtendo-se o valor que o neurônio emite a todos da camada seguinte, multiplicando-os pelos

pesos de suas respectivas interconexões. O funcionamento destes neurônios pode ser observado

na Figura 2.

A função de ativação é uma função que executa uma transformação não linear nos dados

que recebe. Tais funções são muito úteis para que redes neurais possam aprender padrões e

correlações não lineares através de entradas lineares (NWANKPA et al., 2020). Algumas das

mais comuns e que serão as usadas no presente trabalho são a função sigmoidal e a função

tangente hiperbólica.

A função sigmoidal recebe quaisquer valores reais e os transforma em algum valor entre 0 e

1, não incluindo-os. É formulada pela equação 2.4, em que e corresponde ao número de Euler.
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Figura 2: Representação do funcionamento de um neurônio artificial básico

Fonte: Vieira, Pinayab e Mechelli (2017)

Possui um formato em ”S”, como visto na Figura 3.

S(x) =
1

1+ e−x (2.4)

Figura 3: Representação gráfica da função sigmoidal com números reais

Fonte: elaborado pelo autor

Outra transformação não linear amplamente utilizada em redes neurais é a função tangente

hiperbólica, que recebe entradas reais e os transforma a um valor entre -1 e 1, não incluindo-

os, com uma forma em ”S” semelhante ao da função sigmoidal, como visto na Figura 4. É

formulada de acordo com a equação 2.5.

tanh(x) =
ex− e−x

ex + e−x (2.5)



25

Figura 4: Representação gráfica da função tangente hiperbólico com números reais

Fonte: elaborado pelo autor

Pode-se então explicar o valor da variável de saı́da como função das variáveis de entrada.

Sejam:

• a(k)i o neurônio i da camada k

• w(k)
i, j o peso da conexão entre a(k)i e a(k+1)

j

• θ (k) =


w(k)

1,1 · · · w(k)
1, j

... . . . ...

w(k)
i,1 · · · w(k)

i, j

 a matriz com os pesos wi, j da camada k

• g a função de ativação de cada neurônio

• v o vetor de valores de saı́da de uma camada

O vetor de valores de saı́da v da camada k é, portanto, definido pela equação 2.6.

v(k) = g((θ (k−1))T v(k−1)) (2.6)

O método forward propagation é, então, a utilização iterativa da equação 2.6 para se obter

o vetor da camada de saı́da, sendo v(0) o vetor de valores das variáveis explicatórias.

O aprendizado (ou treino) é a redução do valor de erro calculado com base no vetor de

saı́das, comparando-o ao valor real da variável independente da amostra. Após o cálculo do

vetor de saı́das, calcula-se o termo de erro em relação à variável independente da amostra, e

ocorre alteração dos pesos w(k)
i, j para a redução dos valores de erros. Em outras palavras, o
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aprendizado é a redução de J(θ) variando-se θ , sendo θ os pesos das interconexões da rede

neural.

2.3 Gradiente descendente e backpropagation

Uma derivada parcial é a inclinação de uma função de múltiplas variáveis em função de

uma única variável em um dado ponto (STEWART, 2013). Isso pode ser definido de acordo

com a equação 2.7.

∂

∂a
f (a,b) = lim

h→0

f (a+h,b)− f (a,b)
h

(2.7)

Se f é uma função de n variáveis, então o gradiente de f é a função vetorial ∇ f definida

por2.8.

∇ f (x1,x2, . . . ,xn) =



∂ f
∂x1

(x1,x2, . . . ,xn)

∂ f
∂x2

(x1,x2, . . . ,xn)

...
∂ f
∂xn

(x1,x2, . . . ,xn)


(2.8)

Como tal vetor representa a variação de f em função da alteração de cada uma des suas

variáveis, o gradiente representa a direção vetorial no espaço definido por (x1,x2, ...,xn) na

qual a função f possui o maior crescimento. Portanto, muitos dos algoritmos de ML recorrem

ao algoritmo 2.1 de Gradiente Descendente, no qual o algoritmo calcula o gradiente do custo

J(θ) ao se utilizando-se parâmetros θ e altera-os no sentido contrário ao do gradiente, a fim de

reduzir o valor de J iterativamente.

Algoritmo 2.1 Gradiente Descendente
Requer: J(θ) diferenciável para todos os θi

while J(θ)> Job jetivo do
Calcular ∇J(θ)
θ ← θ −α ·∇J(θ)
Calcular J(θ)

end while

No caso de tal algoritmo, utiliza-se uma constante de aprendizado α para regular o quanto

deve ser subtraı́do do vetor θ no sentido do gradiente. Caso o valor de tal constante seja muito

pequeno, o algoritmo pode ser muito custoso computacionalmente e demorado até atingir um
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mı́nimo local. Caso o oposto seja verdade, o valor pode nunca chegar a um mı́nimo local por

conta do algoritmo constantemente ultrapassar tal valor, entrando em um ciclo. Como exemplo

ilustrativo, tem-se a Figura 5.

Figura 5: Representação ilustrativa dos efeitos de diferentes taxas de aprendizado

Fonte: elaborado pelo autor

No trabalho de Rumelhart, Hinton e Williams (1986), os autores propõem o método de

backpropagation (do inglês, ”retropropagação”), por meio do qual se calcula o valor de ∇J(θ)

em redes do tipo feedforward de forma computacionalmente eficiente, aplicando em seguida

o gradiente descendente. Dessa forma, consolidou-se o uso do gradiente descendente como

técnica amplamente utilizada em ML para alteração dos pesos das interconexões definidos por

θ .

2.4 Ciclos de treino em redes do tipo feedforward

Para que seja efetuado o aprendizado (ou treino) da rede neural, se faz necessário primeira-

mente uma amostra de variáveis explicatórias X = (X1, X2, ..., Xm) com seus correspondentes

Y ∈ Rn. Sendo isso assegurado, cria-se uma rede neural com m nós na camada de entrada, n

neurônios na camada de saı́da e camadas ocultas com uma quantidade pré determinada de nós.

Em seguida, os valores dos pesos w das interconexões da rede são definidos aleatoriamente.

O treino consiste em inserir um vetor da amostra - Xi - obter-se o valor de previsão da rede

através do método forward propagation, subsequente cálculo do erro J com base no valor de

Yi, e, por fim, uso das técnicas de backpropagation e gradiente descendente para alteração dos

parâmetros θ . O aprendizado se dá de forma iterativa, aplicando este mesmo método para todas

as unidades da amostra.

Ao aplicar tal método por toda a amostra, é dito que a rede completou um ciclo de treino.

Múltiplos ciclos podem ser executados para melhoria dos parâmetros preditivos da rede. Com o

objetivo de aperfeiçoar o treinamento da rede, Kingma e Ba (2014) propuseram ”Adam”, uma

técnica em que a constante de aprendizado α é estocástica para se evitar flutuações indesejavel-

mente grandes de θ , mostrando que redes nas quais α é constante tendem a iterar o processo
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na forma de um ciclo, no qual os parâmetros θ são alterados sem que isto mude o custo. Além

disso, utilizaram também uma redução drástica não estocástica de α quando ciclos de treinos

adicionais não apresentam suficiente redução do erro J. O efeito da utilização de tais técnicas é

observável na Figura 6.

Figura 6: Representação ilustrativa dos efeitos do uso de Adam sobre o aprendizado da rede

Fonte: elaborado pelo autor

2.5 Regularização e erro de validação

De acordo com Yeom et al. (2020), um modelo sofre de sobreajuste quando sua per-

formance sobre dados não presentes na amostra diverge da performance na amostra, signifi-

cando que o erro de generalização de tal modelo é grande. Como exemplo, toma-se a função

f (x) = x+ 2+ εi, sendo εi ∼ N(0,1). Podem ser utilizados pontos resultantes desta função

para criar um modelo polinomial e, quanto maior a ordem do polinômio, maior a flexibilidade

do modelo para se diminuir o EQM sobre os pontos da amostra. Apesar de ordens maiores

levarem a erros menores, isto é realidade apenas para os pontos que fazem parte da amostra e o

oposto se torna verdade para pontos que não o fazem. Isto pode ser observado na Figura 7, na

qual dois modelos polinomiais são criados para explicarem a função f (x).

Ying (2019) destacou alguns métodos de mitigação dos efeitos de sobreajuste, entre os

quais regularização e parada antecipada. De acordo com o autor, a regularização – no con-

texto de ML – consiste em adicionar, na função de custo J(θ), uma penalidade aos coeficientes

de cada variável explicatória. Isto tem a funcionalidade de, primeiramente, reduzir a relevância

preditória de variáveis que não sejam fortemente correlacionadas ao objeto de previsão e, segun-

damente, para lidar com a multicolinearidade entre variáveis explicatórias, o que, segundo Rey-

naldo (1997), torna instável a estimativa dos coeficientes, sendo sensı́vel a pequenas alterações

nos valores das variáveis independentes.
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Figura 7: Representação ilustrativa dos efeitos de sobreajuste sobre um mesmo conjunto de pontos

Fonte: elaborado pelo autor

Para o caso de um modelo polinomial de ordem n aplicado a uma amostra de tamanho m,

a nova função de custo pode ser então observada na equação 2.9, na qual λ é o coeficiente de

regularização. A regularização que penaliza o quadrado dos coeficientes é conhecida como do

tipo L2. Em contraste, a regularização do tipo L1 penaliza os valores absolutos dos coeficientes.

ŷ(x) = θ0 +
n

∑
j=1

θ jx j

J(θ) = (
m

∑
i=1

(ŷi− yi)
2

m
)+λ

n

∑
j=1

θ
2
j

(2.9)

De maneira análoga ao de modelos polinomiais, a regularização é aplicada também a redes

feedforward. Neste caso, a regularização pode ser aplicada tanto aos pesos das interconexões –

penalizando a quantidade de conexões relevantes ao modelo – quanto às saı́das de cada neurônio

– penalizando a quantidade de nós relevantes ao modelo. Tal função custo pode ser visto na

equação 2.10.

J = (
m

∑
i=1

(ŷi− yi)
2

m
)+λ1(∑

i
∑

j
∑
k

w(k)
i, j )+λ2(∑

k
1v(k)) (2.10)

A técnica de parada antecipada consiste em dividir a amostra em amostras de treino, de

validação e de teste, completar ciclos de treino da rede utilizando-se apenas a amostra de treino

(reduzindo o erro de treino), calcular o erro do modelo quando aplicado à amostra de validação

(erro de validação) e interromper os ciclos de treino quando este erro não estiver decrescendo

consistentemente. Esta técnica se mostra eficiente por interromper o treino da rede antes que

altere os parâmetros a fim de reduzir erros devidos a ruı́do estatı́stico (YING, 2019). Por fim, a

capacidade de generalização do modelo é averiguado por meio de sua aplicação na amostra de
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teste, obtendo-se o erro de teste.

Figura 8: Representação da técnica de parada antecipada

Fonte: elaborado pelo autor

2.6 RNN

RNNs (Redes Neurais Recorrentes, do inglês ”Recurrent Neural Netwoorks”) são uma

famı́lia de redes neurais para processamento de dados sequenciais (GOODFELLOW; BENGIO;

COURVILLE, 2016). Foram propostas por Rumelhart, Hinton e Williams (1986) e são úteis

para a criação de modelos que dependam de uma sequência ordenada, como um modelo que

complete uma frase dadas as primeiras palavras. A diferença principal entre RNNs e redes do

tipo feedforward consiste no fato de cada camada receber como entrada não somente os valores

das variáveis explicatórias mas também do estado oculto h, um vetor que atravessa as unida-

des da RNN sofrendo transformações. Uma camada, no contexto de RNNs, é composta por T

camadas de redes feedforward – ou unidades/células u – que se conectam sequencialmente na

mesma ordem da sequência de entrada (x(1), x(2), ..., x(T )), em que cada unidade recebe o vetor

de saı́da (estado oculto) da camada anterior, conforme representado pela Figura 9.

Sejam:

• y = [y1 y2 ... ym] uma variável de dimensão m que deseja-se prever

• x(t) = [x(t)1 x(t)2 ... x(t)n ] uma variável explicatória de dimensão n na ordem t de uma

sequência de T termos

• u(t) a unidade do RNN na ordem t

• a(t)i o nó i do estado oculto t
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Figura 9: Representação ilustrativa de uma rede neural recorrente simples

Fonte: elaborado pelo autor

• h(t) = [a(t)1 a(t)2 ... a(t)m ] o estado oculto (ou vetor de saı́da) da unidade t

• whi, j o peso da conexão entre o nó i de um estado oculto ao nó j do estado oculto seguinte

(este peso é igual ao longo de toda a RNN)

• θhh =


wh1,1 · · · wh1,m

... . . . ...

whm,1 · · · whm,m

 a matriz de pesos da conexão do estado oculto de uma

unidade à próxima

• wxi, j o peso da conexão entre os nó i da camada de entrada (x(t)) ao nó j do estado oculto

(t) (este peso é igual ao longo de toda a RNN)

• θhx =


wx1,1 · · · wx1,n

... . . . ...

wxm,1 · · · wxm,n

 a matriz de pesos wxi, j

• gh a função de ativação usada entre as unidades da camada RNN

• gv a função de ativação usada entre unidades e as saı́das da camada RNN

Os valores de h(t) e v(t) podem então serem descritos pelas equações 2.11 e 2.12, respecti-

vamente.

h(t) = gh(θhhh(t−1)+θhxx(t)) (2.11)

v(t) = gv(θhhh(t−1)+θhxx(t)) (2.12)

Caso gh e gv sejam a mesma função de ativação, h(t) = v(t), e ambas foram originalmente

propostas como sendo a tangente hiperbólica definida pela equação 2.5. Inicia-se computando
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um valor arbitrário de h(0) (é comum o emprego de h(0) = [0 0 ... 0]) e prosseguindo-se com a

propagação dos valores até a obtenção de v(T ), com o subsequente aprendizado através do BPTT

(”Retropropagação Pelo Tempo”, do inglês ”Backpropagation Through Time”). Normalmente,

essa é a variável que será usada como previsão do modelo, já que leva em consideração todos

os termos x(t) da sequência ordenada.

Como exemplo ilustrativo, tem-se uma rede RNN que recebe n dados de T perı́odos (sendo

t = (t0, t1, ..., tT )) referentes a m ativos, com o objetivo de prever-se o preço destes ativos

em t = t(T+1). A ordem dos valores é de extrema importância para que o modelo preveja

corretamente, como por exemplo em um perı́odo de tendência de subida dos preços destes

ativos. A sequencialidade dos preços crescentes permite que o modelo preveja um provável

crescimento em t = t(T+1).

2.7 LSTM

As RNNs tradicionais sofrem principalmente do problema denominado dissipação/explosão

do gradiente. Como mencionado, as RNNs se utilizam do BPTT, e no cálculo da derivada par-

cial
∂

∂θhh
J no vetor de saı́da v(T ), através da regra da cadeia, há um produtório das derivadas

parciais
∂

∂h(1)
h(2),

∂

∂h(2)
h(3), ...

∂

∂h(T−1)
h(T ). Hochreiter e Schmidhuber (1997) observaram

que em modelos RNN tradicionais em que as derivadas parciais destes termos são menores que

um, o produtório é levado a próximo de zero – o que faria com que o gradiente descendente

tivesse pouco efeito sobre as matrizes de pesos de perı́odos distantes de T . O oposto ocorre

quando as derivadas parciais são maiores do que um, levando o produtório a tender a infinito.

Dito de outra forma, a informação de x(t) tende a perder relevância rapidamente no modelo

preditivo nas unidades posteriores da camada RNN. Por esse motivo, é dito que as RNNs tradi-

cionais possuem memória de curto prazo.

Hochreiter e Schmidhuber (1997) não só observaram este problema como propuseram um

modelo alternativo, a LSTM (”Memória de Curto e Longo Prazo”, do inglês ”Long Short-

Term Memory”). São redes recorrentes nas quais cada unidade possui, no lugar de uma rede

feedforward, quatro destas. Além disso, possuem não só um estado oculto ht mas também

um estado de célula Ct . Este possui a funcionalidade de manter informação de longo prazo

sendo transmitida pela rede, não passando pelas mesmas operações que o estado oculto passa.

As células LSTMs possuem três do que os autores chamaram de portões, que são redes fe-

edforward em combinação com operações vetoriais elemento a elemento com o propósito de

filtrar a informação que terá efeito sobre os estados oculto e de célula.
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Figura 10: Representação de uma célula LSTM

Fonte: adaptado de Hiransha et al. (2018)

O estado de célula observado na Figura 10 representa um fluxo de informação contı́nuo que

atravessa todas as unidades da camada LSTM. O primeiro portão, o de esquecimento, regula

a informação da célula de estado anterior Ct−1 que será mantida em Ct . O portão de entrada

insere novas informações que serão adicionadas ao estado de célula após o primeiro portão,

retornando então o novo estado de célula Ct . Por último, o portão de saı́da se utiliza do estado

de célula atual Ct , do estado oculto anterior ht−1 e do vetor das variáveis de entrada xt para

formar o estado oculto da célula e que será passado às unidades seguintes da camada LSTM

(HIRANSHA et al., 2018).
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3.0 Portfólios de Investimento

3.1 Conceitos básicos

3.1.1 Ativos financeiros

Ativos financeiros são ativos que surgem de um acordo contratual de futuros fluxos de di-

nheiro ou de propriedade sobre uma instituição (CORPORATE FINANCE INSTITUTE, 2021).

Como exemplo de ativo financeiro, tem-se o empréstimo, modalidade na qual aquele que em-

prestou o dinheiro possui um contrato assegurando que receberá de volta a mesma quantidade

emprestada com um excedente – o juros. Outro ativo financeiro amplamente conhecido são as

ações, que representam uma fração de propriedade do capital de uma empresa. O proprietário

de uma ação de uma empresa tem direito a uma fração dos lucros distribuı́dos – os dividendos.

Neste trabalho, os únicos ativos financeiros que serão abordados são as ações. Existem

várias no mercado brasileiro que possuem uma elevada liquidez (facilidade e velocidade em

transformar o ativo em valor monetário), além de altas flutuações de preço quando comparados

a produtos vendidos fisicamente.

3.1.2 Mercado de capitais

O mercado de capitais é todo o sistema no qual são comprados e vendidos os ativos finan-

ceiros – ações, dı́vidas, etc. – referentes a entidades privadas. O mercado acionário faz parte

do de capitais e representa o sistema pelo qual se negociam participações em empresas. No

presente trabalho, o único mercado de capitais que será abordado é o acionário, e portanto os

termos serão utilizados como sinônimos. O mercado acionário é composto por:

• Mercado primário – sistema no qual a empresa vende suas participações de propriedade

sobre a empresa ao público pela primeira vez, por meio de um IPO (Oferta Pública Inicial,

do inglês ”Initial Public Offer”).

• Mercado secundário – sistema no qual ações que já foram vendidas ao público maior
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podem ser negociadas entre quaisquer integrantes do mercado, sendo eles a empresa re-

presentada pela ação ou não.

É importante ressaltar que o crescimento saudável do mercado secundário desenvolve nos

investidores a confiança de que suas ações serão valiosas no futuro, valorizando o mercado

primário e, portanto, aumentando os arrecadamentos advindos de IPOs por parte das empresas.

O mercado acionário no Brasil se dá de forma centralizada através da bolsa de valores B3

(”Brasil, Bolsa, Balcão”). Assim, tanto o mercado primário quanto o secundário acontecem

nesta bolsa. Os proprietários de diversos ativos financeiros podem negociá-los livremente com

outros integrantes do mercado ao preço que as duas partes concordarem.

3.1.3 Índices

Os ı́ndices são, no contexto financeiro, métricas obtidas a partir de alguma medida apli-

cada considerando-se um conjunto de ativos pré selecionados de acordo com um critério. Um

exemplo é o ı́ndice Ibovespa: ”É composto pelas ações [...] de companhias listadas na B3 que

atendem aos critérios descritos na sua metodologia, correspondendo a cerca de 80% do número

de negócios e do volume financeiro do nosso mercado de capitais” (B3, 2021).

O ı́ndice Ibovespa é a soma dos produtos dos preços de determinadas ações por seus pesos,

definidos por critérios como seus volumes de negociação. Os critérios de cálculo dos pesos e

de quais ações compõem o ı́ndice Ibovespa estão no site da B3.

3.1.4 Taxa básica de juros

De acordo com Securato et al. (2003), juros é a remuneração pelo uso do capital. Essa

remuneração varia principalmente em função de dois fatores:

• Risco de não pagamento – maiores expectativas de que o devedor não cumprirá o paga-

mento de sua dı́vida levam a cobranças adicionais de juros

• Maturidade – maiores juros são aplicados quando a duração de tempo para devolver o

capital aumenta

Em diversas economias, governos tomam empréstimos para financiar seus investimentos

e pagar suas dı́vidas, prometendo pagá-los até uma determinada data. No Brasil e em outros

paı́ses, isso se dá principalmente por ”Tı́tulos Públicos”. Como o governo, quando comparado
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a empresas, indivı́duos, etc. representa menores chances de falir e não pagar suas dı́vidas, é

considerado o órgão de menor risco no paı́s. Portanto, os juros dos tı́tulos públicos são os

menores no paı́s e definem a taxa de juros livre de risco, R f . Servem como base para o restante

das modalidades de empréstimo do paı́s, nas quais as taxas tendem a serem maiores do que a

básica. No Brasil, tal taxa recebe o nome de Selic.

3.1.5 Estratégias de investimentos com ações

Os preços de ações estão comumente atrelados a uma expectativa do quanto esta retornará

de dinheiro ao proprietário, justificando seu preço. Existem no mercado diversos integrantes

procurando comprar ações por um valor que acreditam ser menor do que o valor total que essa

empresa o retornará ao longo do tempo, bem como integrantes procurando vendê-las por um

preço que acreditam estar acima de tal valor.

Existem empresas cujo foco é comprar ações e desfrutar dos lucros distribuı́dos ao longo

do tempo de maneira rentável. Há também instituições que operam comprando ações que acre-

ditam que o preço negociado no mercado irá aumentar – independentemente do motivo – e que

poderão vendê-las futuramente, auferindo lucros. O presente trabalho foca em estratégias de

obtenção de renda deste tipo, puramente atreladas à flutuação dos preços das ações.

Define-se o retorno r de um ativo i no perı́odo ∆t, de t0 a t f , como sendo sua flutuação

percentual de t0 para t f no preço p no qual foi negociado na bolsa de valores, como indica a

equação 3.1.

ri,∆t =
pi,t f − pi,t0

pi,t0
(3.1)

3.1.6 Risco

Um portfólio de investimentos, ou carteira, é um conjunto de ativos financeiros em posse

de um indivı́duo ou instituição financeira com o objetivo de auferir lucros. Seu valor financeiro

total é a soma dos valores financeiros de cada ativo unitário. O retorno R de um porfólio P no

perı́odo ∆t composto por m ativos com pesos constantes wi,∆t (quantidade financeira no portfólio

do ativo i no momento t0) pode ser decrito pela equação 3.2. Em outras palavras, seu retorno é

a média ponderada dos retornos dos ativos que o compõem.

RP,∆t =
m

∑
i=1

ri,∆twi,∆t (3.2)

Jorion (2007) define o risco como a variância de resultados inesperados. Em seu trabalho,
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o autor cita diversos tipos de risco, como o de negócios (tomada de decisões que pode levar a

resultados negativos inesperados) bem como o risco financeiro, como por exemplo perdas decor-

rentes de uma queda nos preços de um ativo em posse, e também o risco de mercado/sistêmico,

como os resultados inesperados advindos de uma crise econômica. Uma das métricas desenvol-

vidas para se controlarem e mitigarem os riscos foi o VaR (”Valor em Risco”, do inglês ”Value

At Risk”), que é ”o quão grande pode ser a perda dado um horizonte de tempo e a uma dada

probabilidade” (ROMAN; MITRA, 2009).

A métrica de risco de principal foco neste trabalho é a volatilidade do retorno dos ativos e

do portfólio em um perı́odo ∆t, sendo volatilidade o termo designado para se referir ao desvio

padrão, visto para uma única ação i pela equação 3.3, em que r̄i,∆t representa a média dos

retornos ri no perı́odo ∆t.

σi,∆t =

√√√√√√
t f

∑
t=t0

(ri,∆t− r̄i,∆t)
2

n−1
(3.3)

A volatilidade representa uma medição de dispersão em torno da média. Assim, quanto

maior a volatilidade de um investimento, maior a exposição do investidor a grandes lucros

mas também a grandes perdas. Além disso, os ativos são correlacionados entre si, sendo a

covariância dos retornos de um ativo x e de outro y no perı́odo ∆t de n intervalos de tempo

definida pela equação 3.4.

cov(x,y)∆t =

t f

∑
t=t0

(rx,t− r̄x,∆t) · (ry,t− r̄y,∆t)

n−1
(3.4)

Assim, é possı́vel representar a covariância entre todos os pares de ativos (i, j) de um

portfólio no perı́odo ∆t através da matriz de covariâncias Σ, definida pela equação 3.5.

Σ =


cov(1,1)∆t cov(1,2)∆t · · · cov(1,m)∆t

cov(2,1)∆t cov(2,2)∆t · · · cov(2,m)∆t
... . . . ...

cov(m,1)∆t cov(m,2)∆t · · · cov(m,m)∆t

 (3.5)

Pelas equações 3.3 e 3.4, é possı́vel observar que cov(i, i) = σ2
i . Além disso, cov(1,2) =

cov(2,1), o que torna a matriz Σ simétrica. Assumindo para cada ativo i que seus retornos ri,∆t

são variáveis aleatórias, a variância γ dos retornos de um portfólio com pesos wT = [w1 w2 ...,wn]
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no perı́odo ∆t é definida pela equação 3.6.

γ∆t = wT ·Σ ·w (3.6)

3.2 Fronteira Eficiente de Markowitz

Sejam a1 e a2 dois investimentos cujos retornos ao longo de um perı́odo ∆t são variáveis

aleatórias independentes normalmente distribuı́das, de valores esperados R1 e R2 e desvios

padrões σ1 e σ2 (ri,∆t ∼N (Ri,σ
2
i )), como visto na Figura 11.

Figura 11: Ativos fictı́cios cujos retornos e volatilidades esperadas são conhecidas

Fonte: elaborado pelo autor

Seja P um portfólio com tais investimentos e wT = [w1 w2] o vetor de pesos de cada inves-

timento dentro do portfólio no perı́odo ∆t. Uma combinação linear destes dois investimentos

não resulta em um investimento cujos ponto definido pelos valores de retorno esperado e devio

padrão se encontre na reta entre os pontos destacados na Figura 11. Isto se dá pois o desvio

padrão não é formado linearmente pelos desvios padrões destes ativos, como indicado pela

equação 3.6. Por tal equação, tem-se definida a variância γ do portfólio P na equação 3.7.

γ =
[

w1 w2

]
·

[
σ2

1 cov(1,2)

cov(2,1) σ2
2

]
·

[
w1

w2

]
= w2

1σ
2
1 +2w1w2cov(1,2)+w2

2σ
2
2 (3.7)

Assim, uma combinação linear de a1 e a2 teria uma relação de risco e retorno descrito na

Figura 12.

Dessa forma, chega-se no modelo de otimização de portfólios proposto por Markowitz
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Figura 12: Representação dos retornos e volatilidades de uma combinação linear de dois ativos
cujos retornos são normalmente distribuı́dos

Fonte: elaborado pelo autor

(1959). Em seu trabalho, o autor chama de fronteira eficiente o conjunto de portfólios que

resultam no maior valor de retorno esperado dado um risco limite – expresso em variância

– ou então portfólios que resultam no menor valor de volatilidade esperada dado um retorno

mı́nimo aceitável. Dito isso, ampliou o conceito de diversificação dos investimentos, que ocorre

naturalmente na descoberta da fronteira eficiente de um portfólio.

Tendo-se valores de retornos esperados Ri dos ativos ai para o perı́odo ∆t, suas variâncias e

covariâncias esperadas Σ para o mesmo perı́odo, a forma generalizada de resolução da fronteira

eficiente pode ser vista na equação 3.8, sujeito às restrições vistas em 3.9, nas quais FO denota

a função objetivo. A forma apresentada é a que será utilizada no presente trabalho, na qual

fixa-se um valor de risco máximo desejado σm e maximiza-se os retornos esperados através de

m ativos no perı́odo ∆t.

FO : max(
m

∑
i=1

ri,∆twi,∆t) (3.8)

s.a. wT ·Σ ·w ≤ σ
2
m

m

∑
i=1

wi,∆t ≤ 1

wi,∆t ≥ 0

(3.9)
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4.0 Heterocedasticidade condicional auto-regressiva

4.1 Variâncias não constantes

Toma-se um modelo de regressão linear simples, em que ŷi = β0+β1 ·xi, sendo εi = yi− ŷi

o erro do modelo. Para que tal modelo represente bem a variável dependente, o erro deve seguir

alguns princı́pios:

1. Os erros devem ser independentes para quaisquer pares εi e ε j, com i 6= j

2. Os erros devem ser distribuı́dos através de uma curva normal com média zero e desvio

padrão σ

3. O desvio padrão de ε deve ser constante para todos os valores das variáveis explicatórias

Este último princı́pio é o que define a homocedasticidade. Quando a variância dos ter-

mos de erro mudam concomitantemente com alterações nos valores das variáveis explicatórias,

essa condição se torna de heterocedasticidade. Toma-se como exemplo a função não linear da

equação 4.1. Os valores da função foram tomados nos pontos x ∈ {0,0.5,1.0, ...,5.5,6.0} e,

através do método dos Mı́nimos Quadrados, chegou-se no modelo representado pela equação

4.2.

f (x) =
3x2

4
−3x+5+ sen(10x) (4.1)

ŷ(x) = 0,79+1,49x (4.2)

É possı́vel observar na Figura 13 que a variância dos erros não é homogênea, configurando

a condição como de heterocedasticidade. Isto é comum na volatilidade dos preços de ativos fi-

nanceiros, nos quais perı́odos de alta volatilidade tendem a serem seguidos por perı́odos de alta

volatilidade, bem como perı́odos de baixa volatilidade tendem a serem seguidos por perı́odos de

baixa volatilidade (MANDELBROT, 1967). Este fenômeno é chamado de agrupamento de vo-

latilidade. Pode ser observado, por exemplo, na Figura 14, representando a variação percentual

dos preços diários da ação COCE5, ação da Companhia Energética do Ceará. Há uma tendência
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Figura 13: Exemplo de uma regressão linear aplicada a uma função não linear

Fonte: elaborado pelo autor

dentre os ativos financeiros a haver alguma forma de correlação entre a variância dos preços em

um perı́odo e a variância dos preços no perı́odo seguinte.

Figura 14: Retornos diários da ação COCE5

Fonte: adaptado de Yahoo! Finance (2021)

4.2 Funções de autocorrelação

Uma das formas de se averiguar a independência entre duas variáveis aleatórias x1 e x2

é através do coeficiente de correlação linear de Pearson, definida pela equação 4.3 para um
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perı́odo ∆t.

corr(x1,x2)∆t =
cov(x1,x2)∆t

σ1,∆t ·σ2,∆t
(4.3)

Este coeficiente está por definição no intervalo [−1,1], -1 representando uma forte correlação li-

near negativa, +1 representando uma forte correlação linear positiva e 0 representando nenhuma

correlação linear.

Assim, define-se a função de autocorrelação (FAC) K de uma variável temporal Xt como

sendo a correlação entre a variável Xt e ela mesma defasada de um certo perı́odo, Xt+τ (GUB-

NER, 2006). Assim sendo, define-se então a equação 4.4.

KXX(t, t + τ)∆t =
cov(Xt ,Xt+τ)∆t

σX ,∆t ·σX ,∆t+τ

(4.4)

No entanto, o coeficiente de Pearson pode levar a uma conclusão de forte correlação entre

duas variáveis quando de fato estas são correlacionadas a uma terceira variável, e não entre si.

Dessa forma, define-se a função de autocorrelação parcial (FACP) de ordem (defasagem) 2 na

equação 4.5.

βX(2) =
cov((Xt |Xt−1),(Xt−2|Xt−1))

σt|Xt−1 ·σt−2|Xt−1

(4.5)

No caso da equação 4.5, Xt |Xt−1 é a série de resı́duos após a criação de um modelo de regressão

linear para explicar Xt em função de Xt−1, e Xt−2|Xt−1 é a série de resı́duos após a criação

de uma regressão linear para explicar Xt−2 em função de Xt−1. Uma visualização intuitiva da

autoregressão parcial é a tentativa de se usar Xt−2 para explicar a variância de Xt que não é

explicada pela variância de Xt−1, procurando entender os efeitos de Xt−2 sobre Xt sem que a

correlação entre Xt−1 e Xt−2 seja levada em consideração.

Define-se ainda a FACP de ordem k de acordo com a equação 4.6

βX(k) =
cov((Xt |Xt−1,Xt−2, ...,Xt−k+1),(Xt−k|Xt−1,Xt−2, ...,Xt−k+1))

σt|Xt−1,Xt−2,...,Xt−k+1
·σt−k|Xt−1,Xt−2,...,Xt−k+1

(4.6)

Como exemplo de visualização, tais funções foram aplicadas nas variâncias de perı́odos de

20 dias nos retornos da ação VALE5 (representativa da empresa Vale S.A.), entre os perı́odos

de janeiro de 2012 a dezembro de 2019, observável na Figura 15. No caso, foram representados

os valores de tais funções quando p ∈ {0,1,2, ...,17}.
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Figura 15: Funções FAC e FACP aplicadas nas variâncias dos retornos de VALE5

Fonte: elaborado pelo autor

4.3 Modelos ARCH e GARCH

Seja um modelo autoregressivo linear (AR) de ordem p – para modelar a variável X –

definido pela equação 4.7. Através do método dos Mı́nimos Quadrados, minimiza-se o termo

quadrático de erro ε .

Xt = α0 +α1Xt−1 +α2Xt−2 + . . .+αpXt−p + εt = α0 +(
p

∑
j=1

α jXt− j)+ εt (4.7)

Engle (1982) propôs um modelo que chamou de ARCH (”Heterocedasticidade Condicional

Autoregressiva”, do inglês ”Autoregressive Conditional Heteroskedasdicity”), com o objetivo

de explicar a mudança dos resı́duos de um modelo AR em função do tempo (em outras palavras,

a heterocedasticidade). O autor separa a variância de um modelo em dois tipos: a condicional

(que varia no tempo e depende dos erros anteriores) e a incondicional. O autor define a variância

condicional por meio dos resı́duos conforme a equação 4.8, em que εt são os resı́duos encon-

trados no modelo AR.

εt(p) = α0 +(
p

∑
j=1

α jεt− j) (4.8)

Assim, o autor propõe a criação de modelos de previsão de variâncias de uma variável X no

tempo de acordo com dois passos:

1. Encontrar o melhor modelo AR para representar a variável X

Xt(p) = α̂0 +(
p

∑
j=1

α̂ jXt− j)+ εt

2. Encontrar os parâmetros α do modelo ARCH com base no modelo AR que minimizem o
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erro da previsão de resı́duos

εt(p) = α0 +(
p

∑
j=1

α jεt− j)

Pela proposição de tal modelo, aprofundamento de suas utilizações e suas estimações de

eficiência/eficácia, Robert Engle recebeu o prêmio Nobel de Ciências Econômicas em 2003.

Além disso, Bollerslev, Chou e Kroner (1992) notaram centenas de trabalhos acadêmicos que

utilizaram modelos ARCH para previsão de volatilidades em diferentes mercados financeiros,

obtendo previsões suficientemente precisas em diversos casos.

Bollerslev (1986) propôs uma generalização do modelo ARCH, que foi então denominado

GARCH. De maneira análoga ao da equação 4.8, o autor tentou explicar a variância em t de

acordo não somente com os p erros anteriores do modelo AR mas também das q variâncias

anteriores da variável independente. Assim, a generalização pode ser vista na equação 4.9.

O autor mostrou também que tal modelo é melhor adequado para previsão de variâncias de

variáveis que apresentam o agrupamento de volatilidades.

σt(p,q) = Ω+(
p

∑
j=1

α jεt− j)+(
q

∑
j=1

β jσt− j) (4.9)

Como estes modelos são usados para explicarem variâncias de um perı́odo com base em

variâncias e resı́duos anteriores, utiliza-se a FACP para se determinar quantas amostras anterio-

res devem serem levadas em consideração para a construção de um modelo ARCH/GARCH.
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5.0 Indicadores técnicos

Indicadores técnicos, no contexto financeiro, são métricas matemáticas usando valores do

passado com o objetivo de explicar o movimento do preço de uma ação. Neely et al. (2011)

mostraram que indicadores técnicos têm um alto poder preditivo do movimento dos preços

de ações, e, portanto, serão usados como variáveis explicatórias no modelo criado pelas redes

neurais que farão as previsões dos retornos.

5.1 Média móvel

A média móvel consiste em calcular, em cada momento (t), a média do preço dos ativos nos

k perı́odos anteriores. Uma técnica amplamente utilizada para prever tendências é a análise do

cruzamento de médias móveis do preço de um ativo, uma curta – k1 – e outra longa – k2. Quando

o valor da média móvel curta atravessa o valor da longa, pode-se interpretar tal movimentação

como o valor do preço esteve recentemente se tornando maior do que o valor médio a longo

prazo, indicando uma tendência de subida nos preços. O oposto pode ser interpretado quando o

valor de k1 se torna menor que o de k2. Tal capacidade preditiva justifica a entrada dos valores

de médias móveis de diferentes durações como variáveis explicatórias do modelo desenvolvido

pelas redes neurais neste trabalho.

Para cada momento t, o valor da média móvel m dos preços p de k perı́odos é definida pela

equação 5.1.

mk,t =
1
k
·

k−1

∑
i=0

pt−i (5.1)
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Figura 16: Preços diários de ITUB4 com suas médias móveis de 5 e 30 dias

Fonte: adaptado de Yahoo! Finance (2021)

5.2 EWMA

O EWMA (”Média Móvel Ponderada Exponencialmente”, do inglês ”Exponentially Weigh-

ted Moving Average”) é um indicador semelhante ao das médias móveis, na qual os pesos de

valores mais antigos decrescem numa medida exponencial. Isto significa que a razão entre os

pesos wi de valores adjacentes temporalmente é igual para todos os termos. Primeiro, decide-se

o fator de decrescimento dos pesos, chamado de α . Então, pode se calcular o valor da média

móvel exponencial dos preços p no momento t de um perı́odo ∆t de n dias de acordo com

equação 5.2.

EWMAk,t(α) = α · pt +
k−1

∑
i=1

(1−α)i · pt−i (5.2)

É possı́vel observar que valores maiores de fatores de decrescimento α levam a maiores

pesos para preços mais recentes. Dessa forma, diferentes valores de al pha foram utilizados

para que a própria rede pudesse aprender quais levar em consideração com maior importância

para a previsão de retornos futuros. Os valores utilizados foram 25%, 50% e 75%.

5.3 MACD

O MACD (”Convergência-divergência de médias móveis”, do inglês ”Moving average con-

vergence divergence”) foi desenvolvido em 1970 por Gerald Appel para identificar tendências

de subida ou descida dos preços de um ativo. O MACD é composto pela diferença das médias
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exponenciais de 26 dias e de 12 dias – diferença denotada por ”valor MACD” – bem como

pela média exponencial de um perı́odo mais curto (como 9 dias) desta difererença. Durante

momentos de tendência de movimentação dos preços, nos quais aumentam ou descrescem rapi-

damente, o ”valor MACD” tende a se afastar da média exponencial de tal valor, o que configura

uma divergência. Assim, o indicador identifica momentos de tendência com a convergência e

divergência de tais médias móveis.

Colby e Meyers (1988) demonstrou que, comprando-se ativos atrelados ao ı́ndice Dow

Jones (composto pelos preços dos 30 ativos de maior relevância no mercado acionário norte-

americano) quando a linha MACD estivesse acima da média exponencial de perı́odo curto, e

vendendo-os quando este chegasse a ser maior do que aquele, o investidor possuiria retornos

positivos ao longo de décadas na bolsa de valores americana. Dessa forma, seus componentes

apresentam-se como preditivas do movimento dos preços das ações e, portanto, serão utilizadas

como variáveis explicatórias da rede neural deste trabalho.

5.4 Bandas de Bollinger

As Bandas de Bollinger são indicadores que compõem uma técnica desenvolvida na década

de 1980 por John Bollinger. A técnica é composta por três indicadores: uma média móvel de k

dias (a banda média), a média móvel de k dias somado n desvios padrões referente ao perı́odo

de k dias (a banda superior) e, por último, a média móvel subtraindo-se n desvios padrões (a

banda inferior). Bollinger demonstrou que os preços de vários ativos – principalmente para

commodities como o milho – tendem a reverter a um valor médio. Assim, quando o preço

estivesse mais próximo do terceiro indicador, haveriam evidências de que o preço do ativo

voltaria a subir nos perı́odos seguintes para retornar a seu valor médio.

Colby e Meyers (1988) notou que as bandas de Bollinger são versáteis, sendo úteis para

vários mercados diferentes e reagindo rapidamente a mudanças rápidas de preços. Observou

também que a alteração dos parâmetros k e n fornecem previsões realistas de tendências de

diferentes durações. No entanto, concluiu que as bandas tendem a não fornecer bons sinais de

compra e venda quando utilizadas como indicador único, indicando que devem ser usadas como

suporte a indicadores de causalidade. Em outras palavras, no evento do preço de um ativo atingir

a banda superior, outras métricas devem também serem analisadas para se ter uma previsão

certeira do movimento futuro do preço; na circunstância de haverem poucos motivos para o

preço estar historicamente elevado, se torna provável que o preço cairá novamente, seguindo as

bandas.
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Figura 17: Bandas de Bollinger aplicadas aos preços diários de ITUB4 ao longo de 140 dias
úteis, em que t=20 e n=2

Fonte: adaptado de Yahoo! Finance (2021)
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6.0 Ativos Estudados

6.1 Os ativos do portfólio

Neste trabalho, múltiplos ativos terão seus retornos, variâncias e covariâncias estimadas

para um perı́odo de 20 dias. Faz-se necessário, então, formalizar quais ativos terão tais valores

estimados para futura formação de um portfólio composto exclusivamente destes.

Como constatado previamente neste trabalho, o mercado de capitais se dá de forma cen-

tralizada no Brasil através da bolsa de valores B3. Nem todos os ativos negociados nesta são

de alta liquidez, havendo ativos que não possuem uma negociação sequer ao longo de diversos

dias. Assim, a lei da oferta e da demanda indicaria que esses ativos seriam facilmente sujeitos

a alterações nos preços por negociações únicas feitas num dia (MANKIW, 2005). Para se fazer

uma análise dos retornos dos ativos, foi adotada a hipótese de que as operações indicadas pelo

presente trabalho não alterariam os valores dos preços dos ativos.

Para mitigar as mudanças de preços devido a compras/vendas pontuais, o espaço amos-

tral de ações analisadas foi selecionado a partir do conjunto de ações com maior volume de

negociação financeira na bolsa de valores. Assim, assegura-se que um investidor individual ou

institucional de pequeno a médio porte teria pouco efeito sobre o preço de um ativo com suas

operações.

Portanto, os ativos selecionados para a análise em questão são aqueles que compunham o

ı́ndice IBRX50 no inı́cio do perı́odo de análise (1º de janeiro de 2012), uma carteira teórica

criada pela B3 composta pelos 50 ativos de maior volume diário de negociação por trimestre. A

informação de quais ativos compunham tal grupo em determinada data foi extraı́da a partir da

plataforma Bloomberg Terminal.

Por falta de disponibilidade de alguns preços de alguns ativos na plataforma utilizada para

captá-los (Yahoo! Finance, em 2021), apenas 47 ativos foram pré selecionados dentro desta

carteira. Todos os ativos analisados podem ser observados na Tabela 1.



52

Tabela 1: Ativos pré selecionados para análise de retornos e variâncias

PETR4 PETR3 VALE5 VALE3
ITUB4 ABEV3 BBDC4 CSNA3
ITSA4 GGBR4 CMIG4 USIM5

BRKM5 BBDC3 ELET3 GOAU4
ELET6 KLBN4 BRAP4 OIBR4
SBSP3 BBAS3 CCRO3 LAME4
EMBR3 UNIP6 VIVT3 CPLE6
CTNM4 TRPL4 EGIE3 CMIG3
CGAS5 RAPT4 TIMS3 CLSC4
POMO4 CESP5 ETER3 COCE5
CPLE3 FESA4 BOBR4 SAPR4
TNCP4 TASA4 INEP

Fonte: elaborado pelo autor

6.2 Ativos correlacionados

Os ativos são muitas vezes correlacionados – em diferentes graus – a outros ativos, ou a

situações econômicas. Seus preços podem ser descritos como uma função de seus próprios

desempenhos mas também da situação econômica, tanto global, nacional ou industrial. Um

exemplo seria o desempenho dos retornos de ações a eventos macroeconômicos mundiais. Uma

crise mundial pode levar ao decréscimo de valores de ações, como pode ser visto pela Figura

18, na qual a ação do banco Goldman Sachs na bolsa de Nova York (NYSE, New York Stock

Exchange) aparenta ter caı́do como consequência da crise financeira de 2008.

Figura 18: Preços diários das ações do banco Goldman Sachs

Fonte: adaptado de Yahoo! Finance (2021)
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Dessa forma, para a previsão de retornos, a rede neural recebeu como entradas os valores

de ativos correlacionados aos que queremos prever os retornos, o preço das ações de bancos

internacionais em bolsas americanas de valores, de empresas listadas na bolsa mas que não

compunham o ı́ndice IBRX50, dentre outros.

Referente a situações macroeconômicas, foram captados os valores diários de moedas em

relação ao dólar. Uma queda no valor da moeda nacional pode indicar um fraco desempenho

da economia do paı́s, o que levaria a um decréscimo amplo nos preços da maioria dos ativos

negociados na bolsa de valores.

Além disso, a taxa de juros pode indicar também o movimento do mercado. Quando tal taxa

é elevada, os investidores possuem menores incentivos para tomarem riscos maiores no mercado

acionário para obterem retornos que podem pouco ultrapassarem – ou não ultrapassarem –

os retornos de investimentos em tı́tulos públicos de renda fixa, que representam menor risco.

Assim, o preço de ações e a taxa básica de juros de um paı́s tendem a se movimentar em direções

opostas.

É importante notar que não só a taxa de juros é importante mas também a percepção do

mercado de seu movimento futuro. Quando o mercado espera um aumento, espera também –

por consequência – uma diminuição generalizada no valor das ações. No caso, previsões futuras

de preços refletem em preços presentes, já que assume-se que o investidor racional não deseja

possuir ativos que espera desvalorizarem. Dessa forma, não só a taxa básica de juros vigente

foi utilizada como variável explicatória na rede neural mas também a percepção de mercado de

qual seria a taxa média no futuro.

Isso pôde ser verificado através dos contratos futuros de DI (Depósito Interbancário). Tais

contratos remuneram seus proprietários no valor de R$100 mil e, assim, os participantes do

mercado sobre este ativo negociam estes contratos por um valor que acreditam que seja o valor

destes R$100 mil trazidos a valor presente de acordo com a taxa básica de juros brasileira, a taxa

DI. O valor de uma quantia monetária futura pode ser trazida a valor presente de acordo com a

equação 6.1, sendo NPV o valor presente, i a taxa média de juros anuais, FV o valor futuro e t

o número de dias úteis entre o perı́odo presente e o perı́odo de recebimento do valor. No caso

da taxa brasileira, esta é acruada por dia útil, e foi considerado que o ano possui 252 dias úteis

– como a própria instituição B3 o considera. No caso, o preço de negociação do contrato é o

NPV , e o valor futuro FV equivale aos R$100 mil recebidos na data de vencimento.

NPV =
FV

(1+ i)(
t

252 )
(6.1)

Reescrevendo-se a equação 6.1, pode-se obter a taxa de juros i média em função das outras
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variáveis, visto na equação 6.2.

i = (
FV

NPV
)(−

t
252 )−1 (6.2)

Uma visualização da taxa média pode ser obtida através da Figura 19, na qual o acruo de

capital através da taxa de juros vigente de cada perı́odo leva a um valor final, que pode então ter

sua taxa média calculada de acordo com a equação 6.2.

Figura 19: Representação do cálculo de uma taxa média de juros com base em perı́odos de
diferentes taxas de juros

Fonte: elaborado pelo autor

Estes contratos têm como data de vencimento o primeiro dia útil do mês para o qual está

sendo negociado. Logo, se uma instituição adquire um contrato deste tipo para o mês de julho

de 2030, irá pagar no momento presente o valor negociado e receber o valor de R$100 mil no

primeiro dia útil do mês de julho de 2030. Como os preços diários de contratos com diferentes

datas de vencimento são divulgadas pela B3, se fez possı́vel obter a expectativa consolidada do

mercado sobre a taxa de juros acumulada até a data de vencimento de cada um destes contratos

disponı́veis, de acordo com a equação 6.2.

Como exemplo, alguns dos valores podem ser observados na Tabela 2, obtidos a partir do

site da B3. No caso da rede neural, objetiva-se explicar o valor de variáveis independentes a

partir de dependentes, sendo que as mesmas variáveis devem ser usadas em todas as amostras

– de maneira análoga a uma regressão linear multivariada. Assim, não seria possı́vel usar a

taxa média de juros prevista pelo mercado para um contrato a ∆t dias do vencimento e, no

dia seguinte, usar como valor da mesma variável o valor de tal taxa média para um contrato a

∆t−−1 dias para vencer, já que configuram variáveis diferentes e em diferentes datas. Assim,
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fez-se necessário o uso de interpolações lineares.

Tabela 2: Taxa média de juros de contratos futuros de DI no dia 15 de junho de 2015 para certas
datas de vencimento

Dias até o vencimento do contrato Taxa média de juros prevista pelo mercado
78 13,82%

107 14,01%
137 14,15%
198 14,31%

Fonte: adaptado de B3

Para uma função f (x) com valores conhecidos em f (x1) e f (x2), define-se então uma

interpolação linear f ∗(x∗) de dois pontos (x1, f (x1)) e (x2, f (x2)), com x1 < x∗ < x2 como a

média dos valores de f (xi) ponderados pela distância de x∗ a cada um dos pontos xi. Sua

formulação matemática pode ser vista de duas formas nas equações 6.3 e 6.4.

f ∗(x∗) =
( f (x2) · (x2− x∗))+( f (x1)∗ (x∗− x1))

x2− x1
(6.3)

f ∗(x∗) = f (x1)+
f (x2)− f (x1)

x2− x1
· (x∗− x1) (6.4)

Após a obtenção dos valores diários das expectativas das taxas de juros médias para dife-

rentes datas de vencimento, foram feitas interpolações lineares de acordo com a equação 6.4

para se obter a previsão do mercado para a taxa de juros média para contratos que venceriam

em 1, 2, ..., 3000 dias. Assim, foram obtidos valores diários para todas essas variáveis, que

puderam então serem inseridas como variáveis de entrada na rede neural deste trabalho.

Ademais, fazendo o Brasil parte de uma economia globalizada, acontecimentos internacio-

nais têm muitas vezes efeitos sobre os preços locais de diversos ativos. Portanto, outros ativos

correlacionados selecionados foram os de ı́ndices de bolsas nacional e internacionais, bem como

os preços diários internacionais de empresas multinacionais que possuem operações no Brasil,

como Goldman Sachs, JPMorgan Chase e outros. Além disso, como existe uma relação de cau-

salidade em que o aumento de volatilidade nos mercados acionários norte-americanos levaram,

historicamente, ao aumento de volatilidade do mercado acionário brasileiro (ALMEIDA, 2009),

foi utilizada como variável explicatória também o ı́ndice de volatilidade da bolsa americana VIX

(Volatility Index, ı́ndice feito com base em opções sobre empresasas americanas para represen-

tar o sentimento do mercado em relação à volatilidade dos ativos, sendo a opção um contrato

que confere a seu proprietário o direito de compra/venda de um ativo por um determinado preço
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e em determinadas datas no futuro). Tais preços e ı́ndices foram obtidos gratuitamente através

da plataforma Yahoo! Finance (2021), e sua lista completa está indicada em apêndice.
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7.0 Desenvolvimento

Como anunciado anteriormente neste trabalho, objetivou-se a criação de um portfólio oti-

mizado por meio da fronteira eficiente de Markowitz, integrado a previsões de retornos e de

matrizes de covariâncias por redes neurais do tipo LSTM. Essa abordagem pode ser observada

no fluxograma da Figura 20. Para fins de simplificação, foi adotada a pressuposição de que os

preços são discretos, tendo sido selecionados apenas os preços de fechamento pt (em outras

palavras, o último preço no qual o ativo foi negociado na bolsa de valores em um dado dia (t)),

sendo considerado que todo (t) é um dia útil no qual há negociações na bolsa B3.

Figura 20: Metodologia de abordagem do presente trabalho

Fonte: elaborado pelo autor

Tendo os ativos elegı́veis a fazerem parte do portfólio determinados na seção 6.1, o próximo

passo foi a criação de modelos de previsão de retornos e covariâncias.

Um modelo de previsão pode ser representado através da notação Y = f (X)+ ε , no qual f

representa a função de previsão, Y as variáveis que deseja-se prever (em um primeiro momento,
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os retornos dos ativos e, em seguida, as matrizes de covariâncias), X as variáveis explicatórias

e Ŷ a previsão obtida. Conforme descrito na seção 2.5, faz-se necessário para a criação de tal

modelo, primeiramente, a obtenção de uma amostra sobre a qual o modelo aprenderá, outra

sobre a qual haverá validação e outra com a qual será feita a verificação de sua capacidade de

generalização. Dessa forma, os dados utilizados para previsão foram separadas de acordo com

suas datas, como segue:

• 20 de janeiro de 2012 a 28 de fevereiro de 2018 – 20% das datas foram selecionadas alea-

toriamente para comporem a amostra de validação e as remanescentes foram selecionadas

para comporem a amostra de treino

• 1 de março de 2018 a 26 de dezembro de 2019 – amostra de teste/verificação de capaci-

dade de generalização

Como descrito anteriormente no trabalho, as redes LSTMs se utilizam de sequências e,

portanto, sequências contendo dados de ((t−nd), (t−nd +1), ..., (t)) foram criadas para cada

dia de análise (t), em que nd=40 corresponde ao número de dias anteriores observados. Seja

m o número de variáveis explicatórias observadas nos nd dias anteriores em cada dia (t) para

previsão dos retornos/matrizes de covariâncias de nA ativos entre (t) e (t +20).

7.1 Previsão de retornos

Para cada dia t na amostra de treino, foram criadas matrizes Rm x nA com os valores das

variáveis explicatórias de (t− nd) a (t), e, além disso, o valor do retorno no perı́odo ∆t de (t)

a (t + 20) – a variável que deseja-se prever – foi adicionado ao vetor Y , que é utilizado para

treinar a rede. A representação de tal rede pode ser vista na Figura 21.

Quanto às variáveis explicatórias, foram utilizadas:

• Preços diários de todos os ativos, considerando-se tanto os elegı́veis a fazerem parte do

portfólio quanto os correlacionados, conforme descrito no capı́tulo 6;

• valores diários de ı́ndices de bolsas de valores, conforme explicado na seção 3.1;

• retornos de (t−20) a (t) dos ativos elegı́veis a fazerem parte do portfólio;

• retornos de (t−1) a (t) dos ativos elegı́veis a fazerem parte do portfólio;

• indicadores técnicos de cada um dos ativos elegı́veis a fazerem parte do portfólio, con-

forme explicado no capı́tulo 5;
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Figura 21: Representação do modelo de previsão de retornos por LSTMs

Fonte: elaborado pelo autor

• taxa básica de juros anual (Selic) vigente em (t), conforme explicado na seção 3.1;

• expectativa de mercado para os valores da taxa básica média de juros anual para (t +30),

(t + 90), (t + 180), (t + 360), (t + 720), (t + 1800) e (t + 3000), conforme explicado na

seção 6.2 (obs.: para esta variável, as defasagens referem-se a dias absolutos, diferente-

mente das outras, em que a defasagem de dias é calculada em dias úteis);

• valores de câmbio entre diversas moedas, conforme explicado na seção 6.2;

• variações percentuais de (t−1) a (t) dos valores de câmbio.

A função de erro J(θ) utilizada foi o EQM (equação 2.3), sendo priorizada a função dos

erros quadráticos no lugar dos erros absolutos com o intuito de se aumentar a penalidade no

modelo de erros advindos de outliers (“Um outlier é uma observação que se diferencia tanto

das demais observações que levanta suspeitas de que aquela observação foi gerada por um

mecanismo distinto” (HAWKINS, 1980)) como forma de identificar ativos cujos retornos de 20

dias estão crescendo de forma discrepante aos restantes.

Os hiperparâmetros – os parâmetros que não são modificados pelo treino da rede, como

número de nós, número de camadas, etc. – foram testados iterativamente a fim de se reduzir

o erro de validação. Como explicado na seção 2.3, é necessária a definição de uma taxa de

aprendizado para a execução do gradiente descendente. Foi utilizado o valor inicial de 0,0001,

sendo reduzido pela metade quando 10 ciclos de treino consecutivos mostrassem redução de

erro de validação menor que 0,01%. Foi utilizada apenas uma camada LSTM, de 145 neurônios
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nos estados oculto e de célula. Os coeficientes de regularização foram de λ1 = 0,010 – corres-

pondente ao coeficiente de regularização dos pesos das interconexões da rede – e λ2 = 0,001 –

correspondente ao coeficiente de regularização das saı́das dos neurônios.

7.2 Previsão de matrizes de covariâncias

A previsão das matrizes de covariâncias foi realizada através de uma integração de modelos

ARCH, GARCH e LSTMs, conforme proposto por Kim e Won (2018). Objetivou-se criar um

modelo do tipo Y = f (X)+ ε , no qual Y representa a matriz de covariâncias dos ativos ai do

portfólio na data (t) no perı́odo de (t) a (t + 20). Entretanto, redes neurais retornam vetores e

cada dimensão está associada a uma variável independente, e não matrizes. Portanto, para cada

dia (t), as matrizes de covariâncias foram vetorizadas, tornando
cov(a1,a1)∆t cov(a1,a2)∆t · · · cov(a1,anA)∆t

cov(a2,a1)∆t cov(a2,a2)∆t · · · cov(a2,anA)∆t
... . . . ...

cov(am,a1)∆t cov(am,a2)∆t · · · cov(anA ,anA)∆t


em [

cov(a1,a1)∆t cov(a1,a2)∆t · · · cov(anA−1,anA)∆t cov(anA ,anA)∆t

]
Assim, foram obtidos vetores de dimensão n2

A para que a rede previsse, sendo cada di-

mensão representativa de uma variável dependente.

Em seguida, fez-se necessário criar os modelos de ARCH e GARCH de acordo com as

seguintes equações, respectivamente.

σt(p) = α0 +(
p

∑
j=1

α jεt− j)

σt(p,q) = Ω+(
p

∑
j=1

α jεt− j)+(
q

∑
j=1

β jσt− j)

Os valores de p e q utilizados para a criação dos modelos foram definidos com base na

utilização do PACF, que revelou forte correlação das variâncias em até 3 perı́odos anteriores

para diversos ativos, como mostrado na Figura 22.

Como redes neurais são capazes de modelar relações de extrema complexidade, não foram

selecionados apenas um valor para p e q. Foram criados os modelos de ARCH e GARCH para

cada um dos ativos do portfólio utilizando-se p, q ∈ {1, 2, 3}, possı́vel através da metodologia
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Figura 22: FACP aplicado aos valores diários das variâncias de 20 dias dos retornos de PETR4

Fonte: elaborado pelo autor

discutida na seção 4.3.

Para cada dia (t) e para cada ativo do portfólio, foram utilizados 200 dias de amostra ((t−
199), (t− 198), ..., (t)) para serem criados modelos autoregressivos de ordem p ∈ {1, 2, 3}
para preverem os retornos de cada ativo. Seus resı́duos foram, então, utilizados para a criação

dos ARCH/GARCH de ordens p e q ∈ {1, 2, 3}. Em seguida, os valores dos parâmetros de

cada modelo de todo ativo, bem como suas previsões de variância em 20 dias, foram inseridos

como variáveis explicatórias da rede neural utilizada para a previsão final.

Por fim, foram inseridas como variáveis explicatórias, também, os p-valores de cada variável

de todo modelo (isto é, a probabilidade de que a amostra apresentaria tal comportamento dado

que o coeficiente α/β desta variável é zero).

Dessa forma, as variáveis explicatórias utilizadas na rede neural para previsão de matrizes

de covariâncias foram:

• Preços diários de todos os ativos, considerando-se tanto os elegı́veis a fazerem parte do

portfólio quanto os correlacionados, conforme descrito no capı́tulo 6;

• valores diários de ı́ndices de bolsas de valores, conforme explicado na seção 3.1;

• retornos de (t−20) a (t) dos ativos elegı́veis a fazerem parte do portfólio;

• retornos de (t−1) a (t) dos ativos elegı́veis a fazerem parte do portfólio;

• indicadores técnicos de cada um dos ativos elegı́veis a fazerem parte do portfólio, con-

forme explicado no capı́tulo 5;
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• taxa básica de juros anual (Selic) vigente em (t), conforme explicado na seção 3.1;

• expectativa de mercado para os valores da taxa básica média de juros anual para (t +30),

(t + 90), (t + 180), (t + 360), (t + 720), (t + 1800) e (t + 3000), conforme explicado na

seção 6.2 (obs.: para esta variável, as defasagens referem-se a dias absolutos, diferente-

mente das outras, em que a defasagem de dias é calculada em dias úteis);

• valores de câmbio entre diversas moedas, conforme explicado na seção 6.2;

• variações percentuais de (t−1) a (t) dos valores de câmbio;

• matrizes de covariâncias entre todos os ativos elegı́veis a fazerem parte do portfólio no

perı́odo de (t−20) a (t);

• parâmetros dos modelos de ARCH/GARCH, bem como seus p-valores

Os hiperparâmetros foram testados iterativamente a fim de se reduzir o erro de validação.

A taxa de aprendizado para a execução do gradiente descendente utilizada foi de 0,0001, sendo

reduzido pela metade quando 10 ciclos de treino consecutivos mostrassem redução de erro de

validação menor que 0,01%. Diferentemente da rede concebida para a previsão de retornos,

esta rede foi composta duas camadas LSTM, sendo seus hiperparâmetros observados na Tabela

3, em que λ1 corresponde ao coeficiente de regularização dos pesos das interconexões da rede

e λ2 corresponde ao coeficiente de regularização das saı́das dos neurônios.

Tabela 3: Valores dos hiperparâmetros da rede neural para previsão de retornos futuros

Camada Número de neurônios dos estados oculto e de célula λ1 λ2
1 218 0,010 0,001
2 114 0,00001 0,000

Fonte: elaborado pelo autor

7.3 Otimização do portfólio

Tendo por fim os retornos r de cada ativo i previstos no perı́odo ∆t, de (t) e (t +20), bem

como suas covariâncias, o último passo foi a criação do portfólio. Para cada momento, os pesos

wi de cada ativo i no portfólio foram definidos de acordo com a maximização do retorno pelo

modelo de otimização a seguir. É importante notar que foi inserida a restrição de que todos os

pesos wi,∆t devem ser obrigatoriamente menores que wmax = 0,4, seguindo uma prática comum
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nas empresas do setor: a diversificação obrigatória de ativos no fundo, estabelecendo um limite

no qual pode-se investir em um mesmo ativo.

FO : max(
m

∑
i=1

ri,∆twi,∆t)

s.a. wT ·Σ ·w ≤ σ
2
m

m

∑
i=1

wi,∆t ≤ 1

wi,∆t ≥ 0

wi,∆t ≤ wmax

A variância da rentabilidade do portfólio pode ser medida diariamente mas pode, também,

ser medida anualmente, como é prática comum dentre as gestoras de fundos de investimento. A

conversão entre volatilidade diária e anualizada se dá por meio da equação 7.1. Como diversas

gestoras de fundos de investimento de alta volatilidade – dentre as quais, aquela na qual traba-

lhou o autor deste trabalho – adotam como objetivo atingirem uma volatilidade anual de seus

retornos entre 12% e 16%, o valor de 14% foi utilizado como volatilidade anualizada máxima

aceitável. Assim, o valor de variância máxima σ2
m adotado foi de

0,142

252
.

σanualizada = σdiario ·
√

252 (7.1)

Por fim, a estratégia adotada foi aplicar a mencionada maximização no dia 1 de março de

2018 e, a cada 20 dias úteis, reaplicar a maximização, alterando o valor dos pesos wi de cada

ativo do portfólio. Os retornos foram calculados diariamente com base nas equações 3.1 e 3.2.

É importante notar que não há restrição de soma total dos pesos wi,∆t ser 1, tornando

possı́vel não investir inteiramente todos os recursos do portfólio. A parte não investida é con-

siderada como a parte que possui retorno igual a zero. Dessa forma, em perı́odos de maior

volatilidade no mercado, a maximização dos retornos pelo processo descrito pode levar a pe-

quenos investimentos como forma de proteção a altas flutuações nos preços.
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8.0 Resultados

8.1 Retorno da estratégia

O retorno total da estratégia proposta no presente trabalho foi de 70,94% no perı́odo de 1

de março de 2018 a 26 de dezembro de 2019 obtendo como volatilidade anualizada o valor de

18,16%, enquanto que a taxa Selic apresentou uma rentabilidade final de 11,54% no mesmo

perı́odo. A comparação entre os retornos acumulados pode ser observada na Figura 23.

Figura 23: Retornos acumulados da estratégia resultante do presente trabalho e da taxa básica
de juros brasileira no perı́odo avaliado

Fonte: elaborado pelo autor

Para verificar a eficiência da estratégia, foi realizada a comparação entre os retornos dessa

estratégia com a do ı́ndice Ibovespa, já que serve de métrica para o desempenho da bolsa de

valores agregada. Um retorno similar de ambos poderia indicar que o modelo proposto não está

de fato estruturando um bom portfólio, mas sim que os retornos das ações da bolsa de maneira

ampla estão demonstrando bons resultados. No entanto, é possı́vel observar na Figura 24 que as

variações percentuais acumuladas de tal ı́ndice atingiram 37,28%, com uma volatilidade anuali-

zada de 19,94%, representando resultados inferiores com um risco maior. Além disso, a mesma
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comparação foi efetuada com o ı́ndice IBRX50, dado que os ativos selecionados para compo-

rem o portfólio deste trabalho faziam parte de tal ı́ndice. É importante notar que o IBRX50

tem sua composição reavaliada quadrimestralmente (nos dias 1 de janeiro, 1 de maio e 1 de

setembro) e, sendo assim, os ativos do ı́ndice, ao longo do tempo, não são os mesmos dos ativos

que foram selecionados no portfólio do modelo proposto.

Figura 24: Comparação entre os retornos da estratégia proposta e de dois dos principais ı́ndices
da bolsa de valores brasileira

Fonte: elaborado pelo autor

Realizou-se também a comparação entre o retorno do modelo proposto com o retorno de

uma carteira hipotética composta pelos mesmos 47 ativos em proporções iguais. Esta obteve

um retorno de 58,51% sob uma volatilidade de 18,28%. Assim, o modelo proposto mostrou-se

superior à uma estratégia de alocações iguais de recursos em todos os ativos.

Por último, foi efetuada uma comparação entre o modelo proposto e um modelo de otimização

do portfólio por meio da previsão ingênua, nome dado ao método que consiste em utilizar o

último valor realizado como previsão para o futuro. Em outros termos, uma carteira hipotética

com os mesmos ativos definidos no modelo proposto foi otimizada pela fronteira de eficiência

em que seus valores de retornos esperados de (t) a (t + 20) foram definidos como os retornos

realizados no perı́odo de (t− 20) a (t), bem como a matriz de covariâncias esperadas entre os

ativos no perı́odo de (t) a (t +20) foi definida como sendo a matriz de covariâncias no perı́odo

de (t− 20) a (t). A estratégia que se utilizou da previsão ingênua apresentou um retorno total

de 55,42%, possuindo uma volatilidade anualizada de 18,61%. Dessa forma, o uso de previsões

por meio de redes neurais do tipo LSTM se mostrou superior à utilização da previsão ingênua.
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Figura 25: Comparação entre os retornos da estratégia proposta e os retornos de uma carteira
feita com os mesmos ativos em pesos iguais

Fonte: elaborado pelo autor

Figura 26: Comparação entre os retornos da estratégia proposta e os retornos de uma carteira
utilizando a previsão ingênua

Fonte: elaborado pelo autor
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9.0 Conclusão

A utilização de modelos de redes neurais do tipo LSTM para construção de uma estratégia

quantitativa de investimentos baseados em ativos acionários de alto volume de transações no

mercado brasileiro se mostra uma estratégia de alta rentabilidade. Uma pré seleção dos ati-

vos foi efetuada, ativos correlacionados selecionados, modelos de previsão de retorno de 20

dias construı́do a partir de redes neurais do tipo LSTM, modelos de previsão de volatilidades

integrando ARCH/GARCH e redes LSTMs foram elaborados e, por fim, um otimizador de

alocações financeiros nos ativos selecionados foi concebido por meio das técnicas elaboradas

por Markowitz (1959).

A estratégia proposta obteve retornos hipotéticos de 70,94%, sendo assim, ultrapassam os

de benchmarks tipicamente utilizados como base de comparação para fundos acionários, no-

tadamente Ibovespa e IBRX50, e se mostram superior a uma carteira formada pelos mesmos

ativos em proporções iguais, obtendo retornos maiores sob um risco menor – medido pela vola-

tilidade anualizada, que foi de 18,16%. Portanto, os objetivos deste trabalho foram alcançados

na medida em que foi criada uma estratégia quantitativa cujos retornos supere aqueles de ben-

chmarks.

Apesar de o modelo demonstrar ser eficiente, diversas melhorias podem ser desenvolvidas,

entre as quais, destacam-se:

• Uso de redes neurais do tipo NLP (Processamento de Lı́ngua Natural, do inglês ”Na-

tural Language Processing”) em combinação com programas que automaticamente

captam manchetes e notı́cias do dia sobre um determinado tema - As redes NLPs são

muito utilizadas para análise de sentimento, classificando textos de acordo com o senti-

mento que transmitem, podendo esse ser negativo, neutro ou positivo. Como manchetes

jornalı́sticas possuem alto efeito sobre os retornos de perı́odos curtos de ações (ORMOS;

VáZSONYI, 2011), a utilização de análise de sentimento como variável explicatória nas

redes neurais de previsões de preços e volatilidades poderia trazer ganhos nas previsões.

• Adoção de estratégias que envolvam vendas a descoberto, ou short - Tal modalidade

consiste na venda de uma ação que o vendedor não possui. Para tanto, o vendedor pri-
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meiro efetua a venda, aluga uma ação para fornecê-la ao comprador e, futuramente, deve

comprar a ação de um terceiro para entregá-la ao comprador inicial, retornando a ação

alugada a seu proprietário de origem. Dessa forma, os retornos do ”short” são advin-

dos do decréscimo do preço da ação, já que o vendedor inicialmente vendeu o ativo a

um preço negociado e, cajo haja queda no preço, pagará um valor menor para obtê-lo.

Dessa forma, poderia se incluir na otimização de portfólios a possibilidade de venda a

descoberto de ações que a rede neural prevê haver retornos de 20 dias negativos.

• Integração dos custos transacionais na maximização dos retornos - Existem diversos

custos operacionais envolvidos na compra e venda de ativos, que dependem de diversos

fatores diferentes. Tais custos, como a corretagem, podem variar de acordo com o ativo e

também com a operação (compra, venda ou aluguel de ações). Assim, pode-se desenvol-

ver um modelo de otimização no qual a função objetivo considere os custos transacionais.
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APÊNDICE A – LISTA DE ATIVOS UTILIZADOS COMO VARIÁVEIS

EXPLICATÓRIAS

Tabela 4: Ativos selecionados como variáveis explicatórias das redes neurais

PETR4.SA PETR3.SA VALE5.SA VALE3.SA
ITUB4.SA ABEV3.SA BBDC4.SA TNLP4.SA

EMBR4.SA UBBR11.SA CSNA3.SA ITSA4.SA
GGBR4.SA CMIG4.SA USIM5.SA BRKM5.SA
AMBV3.SA BBDC3.SA ARCZ6.SA BRTP4.SA
ELET3.SA VIVO4.SA VCPA4.SA GOAU4.SA
CMET4.SA TMAR5.SA CRUZ3.SA TNLP3.SA
ELET6.SA BELG4.SA KLBN4.SA BRAP4.SA
OIBR4.SA CPSL3.SA SDIA4.SA SBSP3.SA
CSTB4.SA PCAR4.SA BBAS3.SA VIVT4.SA
CCRO3.SA TCSL4.SA LAME4.SA WEGE4.SA
TCOC4.SA EMBR3.SA SUZB5.SA BRTP3.SA
UNIP6.SA VIVT3.SA EBTP4.SA CPLE6.SA

CTNM4.SA TRPL4.SA UGPA4.SA PTIP4.SA
EGIE3.SA TMCP4.SA FFTL4.SA DURA4.SA
CMIG3.SA CNFB4.SA RPSA4.SA CGAS5.SA
RAPT4.SA ELPL5.SA TMCP3.SA TIMS3.SA
CRTP5.SA CLSC4.SA POMO4.SA CESP5.SA
RIPI4.SA TBLE6.SA MAGS5.SA NETC4.SA

CSPC4.SA ETER3.SA COCE5.SA CPLE3.SA
FESA4.SA MYPK4.SA TPRC6.SA PMAM4.SA
BOBR4.SA TSEP4.SA TCOC3.SA VIVO3.SA
SAPR4.SA LIGH3.SA TLCP4.SA TNCP4.SA
SALM4.SA TASA4.SA INEP4.SA ACES4.SA
ACES3.SA PRGA4.SA USDBRL USDMXN
USDCOP EURBRL BRLARS GBPBRL
EURUSD IBOV UVXY VIXM

GS JPM BAC C
C MS WFC

Fonte: elaborado pelo autor
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APÊNDICE B -  REDE NEURAL PREVISORA DE RETORNOS 

from utils import * 

 

import time 

import pandas as pd 

import xlwings as xw 

import numpy as np 

import scipy as sp 

from scipy.fft import fft, ifft 

 

from mxnet import nd, autograd, gluon 

from mxnet.gluon import nn, rnn 

import mxnet as mx 

import datetime as dt 

import seaborn as sns 

 

import matplotlib.pyplot as plt 

 

from sklearn.decomposition import PCA 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error 

from sklearn.preprocessing import StandardScaler 

 

from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, Model

Checkpoint, TensorBoard 

 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.layers import LSTM 

from tensorflow.keras.layers import Dropout 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras import regularizers 

 

import xgboost as xgb 

from sklearn.metrics import accuracy_score 

 

print("------- Imports concluídos com sucesso -------") 

 

# Pegando os valores dos preços diários 

 

caminho = "C:\\Users\\breno\\Desktop\\Faculdade2\\TF\\TF\\Coletador de dados\\

" 

filename = "Dados-v2.xlsx" 
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dfPrecos = pd.read_excel(caminho+filename, sheet_name="Precos", engine='openpy

xl') 

ativos_portfolio = ["PETR4.SA", "PETR3.SA", "VALE5.SA", "VALE3.SA", "ITUB4.SA"

, "ABEV3.SA", "BBDC4.SA", "CSNA3.SA", "ITSA4.SA", "GGBR4.SA", "CMIG4.SA", "USI

M5.SA", "BRKM5.SA", "BBDC3.SA", "ELET3.SA", "GOAU4.SA", "ELET6.SA", "KLBN4.SA"

, "BRAP4.SA", "OIBR4.SA", "SBSP3.SA", "BBAS3.SA", "CCRO3.SA", "LAME4.SA", "EMB

R3.SA", "UNIP6.SA", "VIVT3.SA", "CPLE6.SA", "CTNM4.SA", "TRPL4.SA", "EGIE3.SA"

, "CMIG3.SA", "CGAS5.SA", "RAPT4.SA", "TIMS3.SA", "CLSC4.SA", "POMO4.SA", "CES

P5.SA", "ETER3.SA", "COCE5.SA", "CPLE3.SA", "FESA4.SA", "BOBR4.SA", "SAPR4.SA"

, "TNCP4.SA", "TASA4.SA", "INEP4.SA"] 

 

 

################ Criando indicadores tecnicos para todos os ativos que podem c

ompor a carteira 

def get_technical_indicators(dataset, ativo): 

    # Retorno do ativo em 1, 5 e 20 dias 

    for n in [1,5,20]: 

        dataset[ativo + '_' + str(n) + '_prev_days_returns'] = (dfPrecos[ativo

]/dfPrecos[ativo].shift(n))-1 

     

    # Médias móveis de 2, 7 e 21 dias 

    dataset[ativo+'_ma2'] = dataset[ativo].rolling(window=2).mean() 

    dataset[ativo + '_ma7'] = dataset[ativo].rolling(window=7).mean() 

    dataset[ativo + '_ma21'] = dataset[ativo].rolling(window=21).mean() 

     

    # MACD 

    dataset[ativo + '_26ema'] = dataset[ativo].ewm(span=26).mean() 

    dataset[ativo + '_12ema'] = dataset[ativo].ewm(span=12).mean() 

 

    dataset[ativo + '_MACD'] = (dataset[ativo + '_12ema']-

dataset[ativo + '_26ema']) 

 

    # Bollinger Bands 

    dataset[ativo + '_20sd'] = dataset[ativo].rolling(window=20).std() 

    dataset[ativo + '_upper_band'] = dataset[ativo + '_ma21'] + (dataset[ativo

 + '_20sd']*2) 

    dataset[ativo + '_lower_band'] = dataset[ativo + '_ma21'] - (dataset[ativo

 + '_20sd']*2) 

     

    # EWMA 

    dataset[ativo + '_ema'] = dataset[ativo].ewm(com=0.5).mean() 

     

 

    return dataset 

 

for ativo in ativos_portfolio: 

    dfPrecos = get_technical_indicators(dfPrecos, ativo) 
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''' 

Definindo o que será previsto: o retorno do ativo em vinte dias 

''' 

n_dias = 20 

 

dfResults = pd.DataFrame() 

dfResults['Date'] = dfPrecos['Date'] 

for ativo in ativos_portfolio: 

    dfResults[ativo+'_20_day_return'] = (dfPrecos[ativo].shift(-

n_dias)/dfPrecos[ativo])-1 

 

dfPrecos.drop(dfPrecos.index[:n_dias], inplace=True) # retirando o que os indi

cadores técnicos não conseguiam calcular até certa data 

dfResults.drop(dfResults.index[:n_dias], inplace=True) 

 

dfPrecos.drop(dfPrecos.index[-

n_dias:], inplace=True) # retirando o que os dias que não podemos calcular os 

retornos de 20 dias depois 

dfResults.drop(dfResults.index[-n_dias:], inplace=True) 

 

############################### Preparando os dados ##########################

##### 

 

n_treino = int(0.75*len(dfPrecos['ITUB4.SA'])) 

n_teste = len(dfPrecos['ITUB4.SA']) - n_treino 

print(f"Dias para treino do modelo: {n_treino}") 

print(f"Dias para se testar o modelo treinado: {n_teste}") 

df_training = dfPrecos.iloc[:n_treino] 

 

cols = list(df_training)[1:] 

 

colsResults = [] 

for ativo in ativos_portfolio: 

    colsResults.append(ativo+'_20_day_return') 

 

datelist_train = list(df_training['Date']) 

 

if type(datelist_train[0]) == str: 

    datelist_train = [dt.datetime.strptime(date, '%Y-%m-

%d').date() for date in datelist_train] 

 

for col in df_training.columns[1:]: 

     df_training[col] = df_training[col].astype(float) 

 

training_set = df_training[cols].values 

results_set = dfResults[colsResults].values 
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''' 

Standard scaling 

Um para todas as variáveis independentes e outro para todas as dependentes 

''' 

sc = StandardScaler() 

training_set_scaled = sc.fit_transform(training_set) 

 

sc_predict = StandardScaler() 

sc_predict.fit_transform(results_set) 

 

x_train = [] 

y_train = [] 

 

n_dias = 20 # numero de dias no futuro que se quer prever o retorno dos ativos 

n_passado = 40 # numero de dias no passado que se olhará para prever tais reto

rnos 

 

for i in range(n_passado, len(training_set_scaled)+1): 

    x_train.append(training_set_scaled[i-n_passado : i][:]) 

    y_train.append([results_set[i-1]]) 

 

x_train = np.array(x_train) 

y_train = np.array(y_train) 

 

 

############################### Criando a rede LSTM ##########################

##### 

 

# Decidindo um valor incial de neurônios na camada oculta como sendo o valor e

ntre o número de neurônios na entrada e os de saída. 

n_input_nodes = len(cols) 

n_output_nodes = len(ativos_portfolio) 

n_hidden_nodes = int((n_input_nodes + n_output_nodes)/5) 

 

# iniciando a rede neural sequencial 

model = Sequential() 

 

# primeira camada da LSTM 

model.add(LSTM(units=n_hidden_nodes, return_sequences=False, input_shape=(n_pa

ssado, n_input_nodes), activity_regularizer=regularizers.l1(1e-2))) 

 

# adicionando dropout para evitar overfitting 

model.add(Dropout(0.25)) 

 

# Adicionando vetores de saída 

model.add(Dense(units=n_output_nodes, activation="linear")) 

 

# Adicionando um otimizador 
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model.compile(optimizer = Adam(learning_rate=0.0001), loss="mean_squared_error

") 

 

#%% 

############################### Treinando a rede #############################

## 

print("--------------- Starting ---------------") 

start_time = time.time() 

print(time.asctime(time.localtime(start_time))) 

print("----------------------------------------") 

 

caminho = f"{os.path.dirname(__file__)}\\ResultadosDoModelo\\" 

weights_filename = caminho + 'weights3.h5' 

es = EarlyStopping(monitor='val_loss', min_delta=1e-

10, patience=15, verbose=1) 

rlr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10, verbose=1

) 

mcp = ModelCheckpoint(filepath=weights_filename, monitor='val_loss', verbose=1

, save_best_weight=True, save_weights_only=True) 

 

tb = TensorBoard('logs') 

 

history = model.fit(x_train, y_train, shuffle=True, epochs=500, callbacks=[es,

 rlr, mcp, tb], validation_split=0.2, verbose=1, batch_size=14) 

 

print("---------------- Ending ----------------") 

end_time = time.time() 

print(time.asctime(time.localtime(end_time))) 

print(f'Total time taken : {end_time-start_time}') 

print("----------------------------------------") 

 

 

################## Fazendo previsões de retornos futuros na amostra de teste #

################# 

df_test = dfPrecos.iloc[n_treino-n_passado:] 

 

cols = list(df_test)[1:] 

 

datelist_test = list(df_test['Date']) 

 

if type(datelist_test[0]) == str: 

    datelist_test = [dt.datetime.strptime(date, '%Y-%m-

%d').date() for date in datelist_test] 

 

for col in df_test.columns[1:]: 

     df_test[col] = df_test[col].astype(float) 
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test_set = df_test[cols].values 

 

# aplicando a mesma normalização aplicada na amostra de treino para a amostra 

de teste 

test_set_scaled = sc.transform(test_set) 

 

x_test = [] 

 

for i in range(n_passado+1, len(test_set_scaled)+1): 

    x_test.append(test_set_scaled[i-n_passado : i][:]) 

 

x_test = np.array(x_test) 

 

predictions_future = model.predict(x_test) 

 

y_pred_future = sc_predict.inverse_transform(predictions_future) 

 

dfPredictions = pd.DataFrame() 

dfPredictions = pd.DataFrame(y_pred_future, columns=ativos_portfolio) 

dfPredictions['Date'] = df_test['Date'].iloc[n_passado:].values 

 

 

ativo = 'ITUB4.SA' 

 

plt.figure(figsize=(14, 5), dpi=100) 

plt.plot(dfResults['Date'], dfResults[ativo + '_20_day_return'], label = 'Verd

adeiros retornos de ' + ativo) 

plt.plot(dfPredictions['Date'], dfPredictions[ativo], label = 'Retornos previs

tos para ' + ativo) 

plt.vlines(df_training['Date'].iloc[-1], -0.5, 0.5, linestyles='--

', colors='gray', label='Início das previsões') 

plt.hlines(0, dfResults['Date'].iloc[0], dfResults['Date'].iloc[-

1], linestyles='--', colors='gray', label='Início das previsões') 

plt.xlabel('Data') 

plt.ylabel('Retorno de 20 dias') 

plt.ylim(-0.5, 0.5) 

plt.legend() 

plt.show() 

 

############################### Salvando as previsões futuras ################

############### 

filename = caminho+'previsaoRetornos.pkl' 

dfPredictions.to_pickle(filename) 
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APÊNDICE C -  REDE NEURAL PREVISORA DE COVARIÂNCIAS 

from numpy.core.defchararray import index 

from tensorflow.python.keras.engine import training 

from utils import * 

 

import time 

import pandas as pd 

import numpy as np 

 

import matplotlib.pyplot as plt 

 

from sklearn.decomposition import PCA 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.metrics import mean_squared_error 

from sklearn.preprocessing import StandardScaler 

 

from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, Model

Checkpoint, TensorBoard 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense 

from tensorflow.keras.layers import LSTM 

from tensorflow.keras.layers import Dropout 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras import regularizers 

from tensorflow.python.keras.backend import shape 

 

from sklearn.metrics import accuracy_score 

 

print("------- Imports concluídos com sucesso -------") 

 

 

# Pegando os valores dos preços diários 

 

caminho = "C:\\Users\\breno\\Desktop\\Faculdade2\\TF\\TF\\Coletador de dados\\

" 

filename = "PrecosComGarch.xlsx" 

dfPrecos = pd.read_excel(caminho+filename, sheet_name="Precos com GARCH", engi

ne='openpyxl') 

ativos_portfolio = ["PETR4.SA", "PETR3.SA", "VALE5.SA", "VALE3.SA", "ITUB4.SA"

, "ABEV3.SA", "BBDC4.SA", "CSNA3.SA", "ITSA4.SA", "GGBR4.SA", "CMIG4.SA", "USI

M5.SA", "BRKM5.SA", "BBDC3.SA", "ELET3.SA", "GOAU4.SA", "ELET6.SA", "KLBN4.SA"

, "BRAP4.SA", "OIBR4.SA", "SBSP3.SA", "BBAS3.SA", "CCRO3.SA", "LAME4.SA", "EMB
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R3.SA", "UNIP6.SA", "VIVT3.SA", "CPLE6.SA", "CTNM4.SA", "TRPL4.SA", "EGIE3.SA"

, "CMIG3.SA", "CGAS5.SA", "RAPT4.SA", "TIMS3.SA", "CLSC4.SA", "POMO4.SA", "CES

P5.SA", "ETER3.SA", "COCE5.SA", "CPLE3.SA", "FESA4.SA", "BOBR4.SA", "SAPR4.SA"

, "TNCP4.SA", "TASA4.SA", "INEP4.SA"] 

n_ativos = len(ativos_portfolio) 

 

 

 

''' 

Definindo o que será previsto: a covariancia dos ativos nos próximos 20 dias 

''' 

 

n_dias = 20 

 

dfResults = pd.DataFrame() 

dfResults['Date'] = dfPrecos['Date'] 

dfResults['Covariancias'] = np.nan 

dfResults['Covariancias'] = dfResults['Covariancias'].astype(object) 

 

for i in range(len(dfPrecos['Date'])-n_dias): 

    dfResults['Covariancias'].iloc[i] = np.cov(dfPrecos[ativos_portfolio].iloc

[i+1:i+n_dias+1].values.transpose()).ravel() 

 

for i in range(n_ativos**2): 

    dfPrecos[len(dfPrecos.columns)] = np.nan 

 

for i in range(n_dias, len(dfPrecos['Date'])): 

    covariancias = dfResults['Covariancias'].iloc[i-n_dias] 

    dfPrecos.loc[i, dfPrecos.columns[-(n_ativos**2):]] = covariancias 

    if i in range(0,3000,100): 

        print(i) 

 

 

n_dias_garch = 200 # numero de dias que o garch esteve usando para fazer as es

timativas, nao há dados de GARCH para valores abaixo disso 

dfPrecos.drop(dfPrecos.index[:n_dias_garch], inplace=True) # retirando o que o

s indicadores técnicos não conseguiam calcular até certa data 

dfResults.drop(dfResults.index[:n_dias_garch], inplace=True) 

 

dfPrecos.drop(dfPrecos.index[-

n_dias:], inplace=True) # retirando o que os dias que não podemos calcular os 

retornos de 20 dias depois 

dfResults.drop(dfResults.index[-n_dias:], inplace=True) 

 

dfPrecos.reset_index(inplace=True) 

dfResults.reset_index(inplace=True) 
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dfPrecos.drop('index', inplace=True, axis=1) 

dfResults.drop('index', inplace=True, axis=1) 

 

dfPrecos = dfPrecos.ffill() 

dfPrecos = dfPrecos.fillna(0) 

 

lista_tamanhos = [] 

for i in range(len(dfResults['Covariancias'])): 

    if dfResults['Covariancias'].iloc[i].shape[0] not in lista_tamanhos: 

        lista_tamanhos.append(dfResults['Covariancias'].iloc[i].shape[0]) 

print(lista_tamanhos) 

 

############################### Preparando os dados ##########################

##### 

 

n_treino = int(0.75*len(dfPrecos['ITUB4.SA'])) 

n_teste = len(dfPrecos['ITUB4.SA']) - n_treino 

print(f"Dias para treino do modelo: {n_treino}") 

print(f"Dias para se testar o modelo treinado: {n_teste}") 

df_training = dfPrecos.iloc[:n_treino] 

 

cols = list(df_training)[1:] 

 

datelist_train = list(df_training['Date']) 

 

if type(datelist_train[0]) == str: 

    datelist_train = [dt.datetime.strptime(date, '%Y-%m-

%d').date() for date in datelist_train] 

 

for col in df_training.columns[1:]: 

     df_training[col] = df_training[col].astype(float) 

 

training_set = df_training[cols].values 

results_set = dfResults['Covariancias'].iloc[:n_treino].values 

a = [] 

for line in results_set: 

    a.append(line.tolist()) 

results_set = np.array(a) 

 

 

''' 

Standard scaling 

Um para todas as variáveis independentes e outro para todas as dependentes 

''' 

sc = StandardScaler() 

training_set_scaled = sc.fit_transform(training_set) 
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sc_predict = StandardScaler() 

sc_predict.fit_transform(results_set) 

 

x_train = [] 

y_train = [] 

 

n_dias = 20 # numero de dias no futuro que se quer prever o retorno dos ativos 

n_passado = 40 # numero de dias no passado que se olhará para prever tais reto

rnos 

 

for i in range(n_passado, len(training_set_scaled)+1): 

    x_train.append(training_set_scaled[i-n_passado : i][:]) 

    y_train.append([results_set[i-1]]) 

 

x_train = np.array(x_train) 

y_train = np.array(y_train) 

 

 

############################### Criando a rede LSTM ##########################

##### 

 

# Decidindo um valor incial de neurônios na camada oculta como sendo o valor e

ntre o número de neurônios na entrada e os de saída. 

n_input_nodes = len(cols) 

n_output_nodes = n_ativos**2 # matriz de covariancias n_ativos x n_ativos 

n_hidden_nodes = int((n_input_nodes + n_output_nodes)/30) 

 

# iniciando a rede neural sequencial 

model = Sequential() 

 

# primeira camada da LSTM 

model.add(LSTM(units=n_hidden_nodes, return_sequences=True, input_shape=(n_pas

sado, n_input_nodes), kernel_regularizer=regularizers.l2(1e-

3), activity_regularizer=regularizers.l1(1e-2))) 

 

# segunda camada de LSTM 

n_second_layer_nodes = int(n_hidden_nodes/2) 

model.add(LSTM(units=n_second_layer_nodes, return_sequences=False, activity_re

gularizer=regularizers.l2(5e-1))) 

 

# adicionando dropout para evitar overfitting 

model.add(Dropout(0.25)) 

 

# Adicionando vetores de saída 

model.add(Dense(units=n_output_nodes, activation="linear")) 

 

# Adicionando um otimizador 
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model.compile(optimizer = Adam(learning_rate=0.0001), loss="mean_squared_error

") 

 

############################### Treinando a rede #############################

## 

print("--------------- Starting ---------------") 

start_time = time.time() 

print(time.asctime(time.localtime(start_time))) 

print("----------------------------------------") 

 

caminho = f"{os.path.dirname(__file__)}\\ResultadosDoModelo\\" 

weights_filename = caminho + 'weightsCovariance.h5' 

es = EarlyStopping(monitor='val_loss', min_delta=1e-

10, patience=15, verbose=1) 

rlr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=10, verbose=1

) 

mcp = ModelCheckpoint(filepath=weights_filename, monitor='val_loss', verbose=1

, save_best_weight=True, save_weights_only=True) 

 

tb = TensorBoard('logs') 

 

history = model.fit(x_train, y_train, shuffle=True, epochs=50, callbacks=[es, 

rlr, mcp, tb], validation_split=0.2, verbose=1, batch_size=14) 

 

 

print("---------------- Ending ----------------") 

end_time = time.time() 

print(time.asctime(time.localtime(end_time))) 

print(f'Total time taken : {end_time-start_time}') 

print("----------------------------------------") 

 

 

############################### Fazendo previsões na amostra de teste ########

####################### 

df_test = dfPrecos.iloc[n_treino-n_passado:] 

 

cols = list(df_test)[1:] 

 

datelist_test = list(df_test['Date']) 

 

if type(datelist_test[0]) == str: 

    datelist_test = [dt.datetime.strptime(date, '%Y-%m-

%d').date() for date in datelist_test] 

 

for col in df_test.columns[1:]: 
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     df_test[col] = df_test[col].astype(float) 

 

test_set = df_test[cols].values 

 

# aplicando a mesma normalização aplicada na amostra de treino para a amostra 

de teste 

test_set_scaled = sc.transform(test_set) 

 

x_test = [] 

 

for i in range(n_passado+1, len(test_set_scaled)+1): 

    x_test.append(test_set_scaled[i-n_passado : i][:]) 

 

x_test = np.array(x_test) 

 

predictions_future = model.predict(x_test) 

 

y_pred_future = sc_predict.inverse_transform(predictions_future) 

 

################# Recriando as matrizes ################# 

dfPredictionMatrices = pd.DataFrame() 

dfPredictionMatrices['Date'] = dfPrecos['Date'].loc[n_treino:] 

dfPredictionMatrices['Covariancias'] = np.nan 

dfPredictionMatrices['Covariancias'] = dfPredictionMatrices['Covariancias'].as

type(object) 

for i in range(y_pred_future.shape[0]): 

    dfPredictionMatrices['Covariancias'].iloc[i] = y_pred_future[i].reshape(n_

ativos, n_ativos) 

 

dfPredictionMatrices['Covariancias'].iloc[-1].shape 

 

 

############################### Salvando as previsões futuras ################

############### 

filename = caminho+'previsaoCovariancias.pkl' 

dfPredictionMatrices.to_pickle(filename) 
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APÊNDICE D -  MODELOS ARCH/GARCH 

######################## Imports ######################## 

import time 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import xlwings as xw 

 

from arch import arch_model 

from arch.__future__ import reindexing 

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf 

 

pd.options.mode.chained_assignment = None  # default='warn' 

 

def findTerm(term, array): 

    count = 0 

    while array[count] != term: 

        count += 1 

    if count == len(array): 

        return('invalid' ) 

    else: 

        return(count) 

 

print("------- Imports concluídos com sucesso -------") 

 

######################## Pegando os dados de preços dos ativos ###############

######### 

path = "C:\\Users\\breno\\Desktop\\Faculdade2\\TF\\TF\\Coletador de dados\\" 

filename = "Dados-v2.xlsx" 

sheetname = "Precos" 

 

 

 

dfPrecos = pd.read_excel(path+filename, sheetname, engine='openpyxl', index_co

l='Date') 

sheetname = "Precos com GARCH" 

df = pd.read_excel(path+filename, sheetname, engine='openpyxl', index_col='Dat

e') 
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filenameConsertado = r'C:\Users\breno\Desktop\Faculdade2\TF\TF\Coletador de da

dos\PrecosComGarch.xlsx' 

wb = xw.Book(filenameConsertado) 

sht = wb.sheets("Precos com GARCH") 

sht.range('A1').value = df 

 

 

######################### Criando as colunas dos parâmetros ARCH/GARCH #######

################## 

 

listaTickers = ["PETR4.SA", "PETR3.SA", "VALE5.SA", "VALE3.SA", "ITUB4.SA", "A

BEV3.SA", "BBDC4.SA", "CSNA3.SA", "ITSA4.SA", "GGBR4.SA", "CMIG4.SA", "USIM5.S

A", "BRKM5.SA", "BBDC3.SA", "ELET3.SA", "GOAU4.SA", "ELET6.SA", "KLBN4.SA", "B

RAP4.SA", "OIBR4.SA", "SBSP3.SA", "BBAS3.SA", "CCRO3.SA", "LAME4.SA", "EMBR3.S

A", "UNIP6.SA", "VIVT3.SA", "CPLE6.SA", "CTNM4.SA", "TRPL4.SA", "EGIE3.SA", "C

MIG3.SA", "CGAS5.SA", "RAPT4.SA", "TIMS3.SA", "CLSC4.SA", "POMO4.SA", "CESP5.S

A", "ETER3.SA", "COCE5.SA", "CPLE3.SA", "FESA4.SA", "BOBR4.SA", "SAPR4.SA", "T

NCP4.SA", "TASA4.SA", "INEP4.SA"] 

 

n_samples = 200 

p_list = range(1, 3) 

q_list = range(1, 3) 

 

n_dias = 20 # numero de dias no futuro que queremos prever 

 

wb = xw.Book(path+filename) 

sht = wb.sheets("Precos com GARCH") 

 

for ativo in listaTickers: 

    if (ativo != 'Date'): 

        first_index = df[ativo].first_valid_index() 

        line = np.where(df.index == first_index)[0][0] 

        first_line = line + n_samples 

        last_line = len(df[ativo]) 

        print(f'Iniciando {ativo}\n') 

 

        if first_line < last_line: 

            for i in range(first_line, last_line): 

                returns_sample = df[ativo].iloc[i-n_samples:i] 

                for p in p_list: 

                    for q in q_list: 

                        model = arch_model(returns_sample, p=p, q=q) 

                        model_fit = model.fit(disp='off') 

                        resulting_parameters = model_fit.params 

                        pred = model_fit.forecast(horizon=20) 
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                        for param in resulting_parameters.keys(): 

                            col_name = ativo + "-garch-p" + str(p) + "-

q" + str(q) + "-" + str(param) 

                            if col_name not in df.columns: 

                                df[col_name] = np.nan 

                            df[col_name].iloc[i] = resulting_parameters[param] 

                         

                        col_name = ativo + "-garch-p" + str(p) + "-

q" + str(q) + "-prediction" 

                        if col_name not in df.columns: 

                            df[col_name] = np.nan 

                        df[col_name].iloc[i] = pred.variance.values[-

1,:][0]             

 

                        model = arch_model(returns_sample, p=p, q=q, vol='ARCH

') 

                        model_fit = model.fit(disp='off') 

                        resulting_parameters = model_fit.params 

                        pred = model_fit.forecast(horizon=1) 

 

                        for param in resulting_parameters.keys(): 

                            col_name = ativo + "-arch-p" + str(p) + "-

q" + str(q) + "-" + str(param) 

                            if col_name not in df.columns: 

                                df[col_name] = np.nan 

                            df[col_name].iloc[i] = resulting_parameters[param] 

                         

                        col_name = ativo + "-arch-p" + str(p) + "-

q" + str(q) + "-prediction" 

                        if col_name not in df.columns: 

                            df[col_name] = np.nan 

 

                        df[col_name].iloc[i] = pred.variance.values[-1,:][0] 

 

    time.sleep(2) 

    df.to_pickle(path+'dfGarchs.pkl') 

    sht.range('A1').value = df 

 

print("---------- Fim do cálculo dos modelos ----------") 

 

 

returns = np.array(dfItau['Returns']) 

plot_pacf(returns**2) 

 

n_treino = int(0.75*len(dfItau['ITUB4.SA'])) 

n_teste = len(dfItau['ITUB4.SA']) - n_treino 
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print(f'n_treino={n_treino:.0f} -- n_teste={n_teste:.0f}') 

 

rolling_predictions = [] 

 

for i in range(n_teste): 

    treino = returns[:-(n_teste+i)] 

    model = arch_model(treino, p=2, q=2) 

    model_fit = model.fit(disp='off') 

    pred = model_fit.forecast(horizon = 20) 

    rolling_predictions.append(np.sqrt(pred.variance.values[-1,:][0])) 

     

 

rolling_std = pd.Series(dfItau['20sd'][-

n_teste:].values, index = dfItau['Date'][-n_teste:]) 

rolling_predictions_pd = pd.Series(rolling_predictions, index = dfItau['Date']

[-n_teste:]) 

real_returns = pd.Series(dfItau['Returns'][-

n_teste:].values, index = dfItau['Date'][-n_teste:]) 

 

plt.figure(figsize=(10, 4)) 

true, = plt.plot(real_returns) 

preds, = plt.plot(rolling_predictions_pd) 

stds, = plt.plot(rolling_std) 

plt.title('Previsão de volatilidade das ações do Itaú (ITUB4)') 

plt.legend(['Retorno real diário', 'Volatilidade prevista', 'Vol realizada (20

 dias)'], fontsize=12) 

 

 

real_returns = pd.Series(dfItau['Returns'].iloc[-

n_teste:].values, index = dfItau['Date'][-n_teste:]) 

print(real_returns) 
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APÊNDICE E -  REBALANCEADOR DE PORTFÓLIO 

from numpy.lib.utils import byte_bounds 

import pandas as pd 

import numpy as np 

import time 

import datetime as dt 

from scipy.optimize import minimize 

import xlwings as xw 

 

 

########################### Recuperando os dados de previsão #################

########## 

 

caminho = "C:\\Users\\breno\\Desktop\\Faculdade2\\TF\\TF\\Coletador de dados\\

" 

filename = "Dados-v2.xlsx" 

dfPrecos = pd.read_excel(caminho+filename, sheet_name="Precos", engine='openpy

xl') 

ativos_portfolio = ["PETR4.SA", "PETR3.SA", "VALE5.SA", "VALE3.SA", "ITUB4.SA"

, "ABEV3.SA", "BBDC4.SA", "CSNA3.SA", "ITSA4.SA", "GGBR4.SA", "CMIG4.SA", "USI

M5.SA", "BRKM5.SA", "BBDC3.SA", "ELET3.SA", "GOAU4.SA", "ELET6.SA", "KLBN4.SA"

, "BRAP4.SA", "OIBR4.SA", "SBSP3.SA", "BBAS3.SA", "CCRO3.SA", "LAME4.SA", "EMB

R3.SA", "UNIP6.SA", "VIVT3.SA", "CPLE6.SA", "CTNM4.SA", "TRPL4.SA", "EGIE3.SA"

, "CMIG3.SA", "CGAS5.SA", "RAPT4.SA", "TIMS3.SA", "CLSC4.SA", "POMO4.SA", "CES

P5.SA", "ETER3.SA", "COCE5.SA", "CPLE3.SA", "FESA4.SA", "BOBR4.SA", "SAPR4.SA"

, "TNCP4.SA", "TASA4.SA", "INEP4.SA"] 

n_ativos = len(ativos_portfolio) 

 

naiveForecasting = True 

 

if naiveForecasting == False: 

    caminho = "C:\\Users\\breno\\Desktop\\Faculdade2\\TF\\TF\\Code\\Resultados

DoModelo\\" 

    dfPredictionReturns = pd.DataFrame() 

    dfPredictionCovariances = pd.DataFrame() 

    dfPredictionReturns = pd.read_pickle(caminho+'previsaoRetornos.pkl') 

    dfPredictionCovariances = pd.read_pickle(caminho+'previsaoCovariancias.pkl

') 

else: 

    dfPredictionReturns = pd.DataFrame() 

    dfPredictionReturns['Date'] = dfPrecos['Date'] 
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    for ativo in ativos_portfolio: 

        dfPredictionReturns[ativo] = (dfPrecos[ativo]/dfPrecos[ativo].shift(20

))-1 

    dfPredictionCovariances = pd.DataFrame() 

    dfPredictionCovariances['Date'] = dfPrecos['Date'] 

    dfPredictionCovariances['Covariancias'] = np.nan 

    dfPredictionCovariances['Covariancias'] = dfPredictionCovariances['Covaria

ncias'].astype(object) 

    tamanho = int(len(dfPrecos['Date'])) 

    for i in range(int(tamanho/2), tamanho): 

        dfPredictionCovariances['Covariancias'].iloc[i] = np.cov(dfPredictionR

eturns[ativos_portfolio].iloc[i-19:i+1].values.transpose()) 

         

     

 

variancia_maxima = (0.14/(252**0.5))**2 

 

maxima_alocacao = 0.40 

n_dias = 20 

 

# Setando os períodos de previsão iguais para ambos os dataframes de previsão 

first_day = max(dfPredictionReturns['Date'].iloc[0], dfPredictionCovariances['

Date'].iloc[0]) 

first_day 

i_start = 0 

if dfPredictionCovariances['Date'].iloc[0] > dfPredictionReturns['Date'].iloc[

0]: 

    while dfPredictionReturns['Date'].iloc[i_start] != first_day: 

        i_start += 1 

    dfPredictionReturns = dfPredictionReturns.iloc[i_start:] 

 

elif dfPredictionReturns['Date'].iloc[0] > first_day: 

    while dfPredictionCovariances['Date'].iloc[i_start] != dfPredictionReturns

['Date'].iloc[0]: 

        i_start += 1 

    dfPredictionCovariances = dfPredictionCovariances.iloc[i_start:] 

 

if dfPrecos['Date'].iloc[0] != first_day: 

    i_start = 0 

    while dfPrecos['Date'].iloc[i_start] != first_day: 

        i_start += 1 

    dfPrecos = dfPrecos.iloc[i_start:] 

 

dfPrecos = dfPrecos.iloc[:len(dfPredictionReturns['Date']) + n_dias] 

 

dfPredictionReturns.reset_index(drop=True, inplace=True) 

dfPredictionCovariances.reset_index(drop=True, inplace=True) 
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dfPrecos.reset_index(drop=True, inplace=True) 

 

bound = [0.0, 1.0] 

bounds = [] 

for i in range(n_ativos): 

    bounds.append(bound) 

 

def otimizaPeriodo(ativos_portfolio, retornos, covariancias): 

    n_ativos = len(ativos_portfolio) 

    if len(retornos) != n_ativos or len(covariancias) != n_ativos: 

        return('Erro: tamanho dos vetores não são iguais') 

    for i in range(len(covariancias)): 

        if len(covariancias[i]) != n_ativos: 

            return('Erro: tamanho dos vetores não são iguais') 

    retornos = np.array(retornos) 

 

    global bounds 

 

    x0 = [(1/n_ativos) for i in range(n_ativos)] # estimativa inicial de aloca

ção 

 

    con1 = {'type': 'ineq', 'fun': constraint1} 

    con2 = {'type': 'ineq', 'fun': constraint2} 

    con3 = {'type': 'ineq', 'fun': constraint3} 

 

    cons = [con1, con2, con3] 

 

    sol = minimize(funcaoObjetivo, x0, method='SLSQP', bounds=bounds, constrai

nts=cons) 

    return(sol.x) 

 

def funcaoObjetivo(x): 

    # Minimizando o inverso do retorno (o mesmo que maximizando o retorno) 

    global retornos 

    npRetornos = np.array(retornos) 

    x = np.array(x) 

    return(-1 * np.matmul(npRetornos.transpose(), x)) 

 

def constraint1(x): 

    global covariancias 

    global variancia_maxima 

    x = np.array(x) 

    var = np.matmul(np.matmul(x.transpose(), covariancias), x) 

    # return(var-variancia_maxima) 

    return(variancia_maxima - var) 

 

def constraint2(x): 
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    # A soma das alocacoes em cada ativo nao pode ultrapassar 100% 

    soma = -1 

    for termo in x: 

        soma += termo 

    # return(soma) 

    return(-1*soma) 

 

def constraint3(x): 

    # Estabelecendo limite maximo de quanto pode ser alocado em cada ativo 

    global maxima_alocacao 

    maximo = 0 

    for termo in x: 

        if termo > maximo: 

            maximo = termo 

    return(maxima_alocacao - maximo) 

 

 

retornoEsperado = dfPredictionReturns.values[0][:-1] 

covEsperada = dfPredictionCovariances.values[0][1:][0] 

for i in range(47): 

    covEsperada[i][i] = abs(covEsperada[i][i]) 

covariancias = covEsperada 

retornos = retornoEsperado 

peso1 = otimizaPeriodo(ativos_portfolio, retornoEsperado, covariancias=covEspe

rada) 

 

alocacoes = [] 

datas = [] 

 

for i in range(0, len(dfPredictionReturns), n_dias): 

    retornos = dfPredictionReturns.values[i][:-1] 

    covariancias = dfPredictionCovariances.values[i][1:][0] 

    alocacao = otimizaPeriodo(ativos_portfolio, retornos, covariancias) 

 

    datas.append(dfPredictionReturns['Date'].iloc[i]) 

    alocacoes.append(alocacao) 

 

valoresFinais = np.array(alocacoes) 

 

 

############################### Projetando os retornos #######################

######## 

dfRetornosReais = pd.DataFrame() 
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for ativo in ativos_portfolio: 

    dfRetornosReais[ativo] = dfPrecos[ativo]/dfPrecos[ativo].shift(1) 

 

dfRetornosReais = dfRetornosReais.fillna(value=1) 

 

dfRetornosReais['NaoAlocado'] = 1 

 

retornos_reais = dfRetornosReais.values 

retornos_reais.shape 

 

alocado_por_data = [] 

periodos = valoresFinais.shape[0] # periodos de rebalanceamento a cada n_dias 

sobras = [] 

 

totais_alocados = valoresFinais.sum(axis=1) 

 

for i in range(periodos): 

    total_alocado = totais_alocados[i] 

    sobra = max(0, 1-total_alocado) 

    for j in range(n_dias): 

        alocado_por_data.append(valoresFinais[i]) 

        sobras.append([sobra]) 

 

alocado_por_data = np.array(alocado_por_data) 

sobras = np.array(sobras) 

 

alocado_por_data = np.append(alocado_por_data, sobras, axis=1) 

 

n_total_dias = alocado_por_data.shape[0] 

 

retornos_reais = retornos_reais[:n_total_dias] 

 

# Retornos diários da estratégia por ativo 

retornos_estrategias_por_ativo = np.multiply(retornos_reais, alocado_por_data) 

 

# Retorno diário da estratégia 

retornos_estrategias = retornos_estrategias_por_ativo.sum(axis=1) 

 

# Retorno total da estratégia ao longo de todo o período 

retorno_final = np.prod(retornos_estrategias) 

 

print (f'volatilidade anualizada = {100*retornos_estrategias.std()*(252**0.5):

.2f}%') 

print (f'retorno_final = {retorno_final} = {100*(retorno_final - 1):.2f}%') 
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#################### Passando alocacoes ao Excel #################### 

if naiveForecasting == False: 

    caminho = "C:\\Users\\breno\\Desktop\\Faculdade2\\TF\\TF\\Code\\AlocacoesE

strategia.xlsx" 

else: 

    caminho = "C:\\Users\\breno\\Desktop\\Faculdade2\\TF\\TF\\Code\\AlocacoesE

strategiaNaiveForecasting.xlsx" 

wb = xw.Book(caminho) 

shtPrecos = wb.sheets('Precos diarios') 

shtAlocacoes = wb.sheets('Alocacoes diarias') 

shtRetornos = wb.sheets('Retornos diarios') 

 

shtPrecos.range('A1').value = dfPrecos 

shtAlocacoes.range('B2').value = alocado_por_data 

shtRetornos.range('B2').value = retornos_estrategias_por_ativo 

 

 


